900
Chen et al.
suggested that the high-energy transitions were mainly
Table 4. Calculated leaner absorption properties (nm), excitation
energy (eV), oscillator strengths, and major contribution for L ptriphenylamine!p*
transition, while the low-
energy transition was attributed to p!p* transition for L
triphenylamine
and Ni(L)2(SCN)2
and LMCT transition for Ni(L)2(SCN)2.
Oscillator
Compound DE1 λ (nm)bb strengths
Nature of
aa
the transition
L
2.996
4.209
2.703
4.223
413
294
458
293
0.785
0.063
0.014
0.002
116(HOMO)!
Funding
117(LUMO)(0.65)
116(HOMO)!
This work was supported by a grant for the National Natural
Science Foundation of China (51372003, 21271003,
21271004), the Natural Science Foundation of Anhui Prov-
ince (1208085MB22).
121(LUMOC5)(0.60)
264(HOMO-6)!
271(LUMO)(0.54)
269(HOMO-1)!
277(LUMOC6)(0.52)
Ni(L)2
(SCN)2
aThe energy gap of the single-photon absorption band.
bPeak position of the linear absorption band.
References
1. Kuo, C. P.; Chuang, C. N.; Chang, C. L.; Leung, M. K.; Lian, H.
Y.; Wu, K. C. W. J. Mater. Chem. C 2013, 1, 2121–2130.
2. Kuo, C. P.; Leung, M. K. Phys. Chem. Chem. Phys. 2014, 16, 79–
87.
3. Kwon, J.; Kim, M. K.; Hong, J. P.; Lee, W.; Lee, S.; Hong, J. I.
Bull. Korean Chem. Soc. 2013, 345, 1355–1360.
4. Kong, L.; Yang, J.-X.; Zhou, H.-P.; Li, S.-L.; Hao, F.-Y.; Zhang,
Q.; Tu, Y.-L.; Wu, J.-Y.; Xue, Z.-M.; Tian, Y.-P. Sci. China.
Chem. 2013, 56, 106–116.
5. Ripaud, E.; Rousseau, T.; Philippe, J. R. Adv. Energy Mater. 2011,
1, 540–545.
Linear Absorption Spectra and TD-DFT
The linear absorption spectra of L and Ni(L)2(SCN)2 in four
different solvents are shown in Figure 5. It can be seen that
the linear absorption spectra of L features an intense absorp-
tion at 410 nm, which originates from p!p* transition or
intramolecular charge transfer (ICT) transition, while the
high-energy band was assigned to the p!p* transition of the
triphenylamine moiety. The high-energy band of the complex
Ni(L)2(SCN)2 is similar to the ligand L, while the low-energy
band was tentatively assigned to the LMCT transitions
between the ligand p* and the Ni(II) dp orbitals.
TD-DFT computational studies were performed to eluci-
date the electronic structures of the ground state of L and Ni
(L)2(SCN)2. The schematic representation of the molecular
orbitals of L and Ni(L)2(SCN)2 were exhibited in Figure 6,
and the energies and compositions of some frontier orbitals
were listed in Table 4.
6. Hoffman, D. P.; Lee, O. P.; Millstone, J. E.; Chen, M. S.; Su, T. A.;
ꢀ
Creelman, M.; Frechet, J. M. J.; Mathies, R. A. J. Phys. Chem. C
2013, 117, 6990–6997.
7. Christopher, J. W.; Kiyoshi, C. D. R.; Paul, I. P. E.; Curtis, P. B.;
Elizabeth, A. G. RSC. Adv. 2014, 4, 5782–5791.
8. Ni, W.-X.; Li, M.; Zhan, S.-Z.; Hou, J.-Z.; Li, D. Inorg. Chem.
2009, 48, 1433–1441.
9. Jabri, E.; Carr, M. B.; Hausinger, R. P.; Karplus, P. A. Science
1995, 268, 998–1004.
10. Panja, A. N.; Shaikh, S.; Gupta, R.; Butcher, J.; Banerjee, P. Eur. J.
Inorg. Chem. 2003, 1540–1547.
11. You, Z.-L.; Zhu, H.-L. Z. Anorg. Allg. Chem. 2006, 632, 140–146.
12. Zhu, H.-L.; Tong, Y.-X.; Chen, X.-M. J. Chem. Soc., Dalton Trans.
2000, 4182–4186.
13. Zhou, Y.; Li, Z.-X.; Zang, S.-Q.; Zhu, Y.-Y.; Zhang, H.-Y.; Hou,
H.-W.; Thomas, C. W. Mak. Org. Lett. 2012, 14, 1214–1217.
14. Andruh, M. Chem. Commun. 2011, 47, 3025–3042.
15. Vijayalakshmi, S.; Kalyanaraman, S.; Krishnakumar, V. Spectro-
chim. Acta Part A: Mol. Biomol Spectrosc.. 2013, 109, 253–258.
16. Golcu, A.; Tumer, M.; Havva, D.; Wheatley, R. A. Inorg. Chim.
Acta 2005, 358, 1785–1797.
The band originates from a HOMO!LUMO for L tran-
sition was assigned to p!p* transition. The transition at
294 nm correspond to the HOMO!LUMOC5 for L, which
can be assigned to ptriphenylamine!p*
transition.
triphenylamine
The low-energy band calculated at 458 nm (f D 0.014) of Ni
(L)2(SCN)2. This band mainly originates from transitions of
HOMO-6!LUMO, which can be assigned to a LMCT tran-
sition due to the ligand characteristic HOMO and the metal
ions center characteristic LUOMO. The high-energy band
calculated at 293 nm of Ni(L)2(SCN)2 is similar to the ligand
L. This band mainly originates from transitions of HOMO-
1!LUMOC6, which can be assigned to ptriphenylamine!p*
17. Priya, N. P.; Arunachalam, S.; Manimaran, A.; Muthupriya, D.;
Jayabalakrishnan, C. Spectrochim. Acta Part. A 2009, 72, 670–676.
18. Lobana, T. S.; Sharma, R.; Bawa, G.; Khanna, S. Coord. Chem.
Rev. 2009, 253, 977–1055.
transition. The results are well consistent with
triphenylamine
19. Wang, H.-B.; Miao, W.-G.; Liu, H.-J.; Zhang, X.-F.; Du, X.-Z. J.
Phys. Chem. B 2010, 114, 11069–11075.
that from the experiments.
20. Massimiliano, D.; McInnis, J. P.; Marks, T. J. Organometallics.
2010, 29, 5040–5049.
21. Pouralimardan, O.; Chamayou, A. C.; Janiak, C.; Hosseini-Mon-
fared, H. Inorg. Chim. Acta 2007, 360, 1599–1608.
Conclusion
22. Andersen, L. H.; Nielsen, I. B.; Kristensen, M. B.; Ghazaly, M. O.
A. E.; Haacke, S.; Nielsen, M. B.; Petersen, M. A. J. Am. Chem.
Soc. 2005, 127, 12347–12350.
23. Liu, J.; Zhang, Q.; Ding H. J.; Zhang, J.; Tan, J. Y.; Wang, C. K.;
Wu, J. Y.; Li, S. L.; Zhou, H. P.; Yang, J. X.; Tian, Y. P. Science.
China. Chemistry. 2013, 56, 1315–1324.
A novel ligand L and its mononuclear nickel complex Ni
(L)2(SCN)2 have been synthesized and confirmed by a single-
crystal X-ray diffraction analysis. The photophysical proper-
ties of them were investigated and interpreted on the basis of
theoretical calculations (TD-DFT). TD-DFT calculations