Inverted Perovskite Solar Cells
Chin. J. Chem.
spiro-MeOTAD films. Chem. Mater. 2015, 27, 562‒569.
[8] Zhu, R. Inverted devices are catching up. Nat. Energy 2020, 5, 123‒
124.
[9] Li, F.; Deng, X.; Qi, F.; Li, Z.; Liu, D.; Shen, D.; Qin, M.; Wu, S.; Lin, F.;
Jang, S.-H.; Zhang, J.; Lu, X.; Lei, D.; Lee, C.-S.; Zhu, Z.; Jen, A. K. Y.
Regulating surface termination for efficient inverted perovskite solar
cells with greater than 23% efficiency. J. Am. Chem. Soc. 2020, 142,
20134‒20142.
J. Power Sources 2017, 344, 160‒169; (d) Lian, X.; Chen, J.; Zhang, Y.;
Wu, G.; Chen, H. Inverted perovskite solar cells based on small
molecular hole transport material C8-dioctylbenzothienobenzothio-
phene. Chin. J. Chem. 2019, 37, 1239‒1244.
[16] (a) Li, Z. a.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, A. K.
Y. Rational design of dipolar chromophore as an efficient dopant-free
hole-transporting material for perovskite solar cells. J. Am. Chem. Soc.
2016, 138, 11833‒11839; (b) Lin, Y.-D.; Abate, S. Y.; Chung, H.-C.;
Liau, K.-L.; Tao, Y.-T.; Chow, T. J.; Sun, S.-S. Donor-acceptor-donor
type cyclopenta 2,1-b; 3,4-b' dithiophene derivatives as a new class
of hole transporting materials for highly efficient and stable
perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 7070‒7082;
(c) Guo, H.; Zhang, H.; Shen, C.; Zhang, D.; Liu, S.; Wu, Y.; Zhu, W.-H.
A coplanar π-extended quinoxaline based hole-transporting material
enabling over 21% efficiency for dopant-free perovskite solar cells.
Angew. Chem. Int. Ed. 2020, 59, 2674‒2679; (d) Sun, X. L.; Xue, Q. F.;
Zhu, Z. L.; Xiao, Q.; Jiang, K.; Yip, H. L.; Yan, H.; Li, Z. A.
Fluoranthene-based dopant-free hole transporting materials for
efficient perovskite solar cells. Chem. Sci. 2018, 9, 2698‒2704; (e)
Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C.
W.; Zhang, X.; Sun, H.; Chen, G.; Feng, X.; Woo, H. Y.; Djurisic, A. B.;
He, Z.; Guo, X. Dopant-free small-molecule hole-transporting
material for inverted perovskite solar cells with efficiency exceeding
21%. Adv. Mater. 2019, 31, 1902781; (f) Chen, W.; Wang, Y.; Liu, B.;
Gao, Y.; Wu, Z.; Shi, Y.; Tang, Y.; Yang, K.; Zhang, Y.; Sun, W.; Feng, X.;
Laquai, F.; Woo, H. Y.; Djurisic, A. B.; Guo, X.; He, Z. Engineering of
dendritic dopant-free hole transport molecules: Enabling ultrahigh
fill factor in perovskite solar cells with optimized dendron construc-
tion. Sci. China Chem. 2021, 64, 41‒51; (g) Guo, H.; Zhang, H.; Shen,
C.; Zhang, D.; Liu, S.; Wu, Y.; Zhu, W.-H. A coplanar π-extended
quinoxaline based hole-transporting material enabling over 21ꢁ%
efficiency for dopant-free perovskite solar cells. Angew. Chem. Int.
Ed. 2021, 60, 2674‒2679; (h) Yu, X.; Li, Z.; Sun, X.; Zhong, C.; Zhu, Z.;
Li, Z.; Jen, A. K. Y. Dopant-free dicyanofluoranthene-based hole
transporting material with low cost enables efficient flexible
perovskite solar cells. Nano Energy 2021, 82, 105701; (i) Wang, M.;
Wan, L.; Gao X.; Yuan, W.; Fang, J.; Tao, Y.; Huang, W. Synthesis of
D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Appli-
cation in Inverted Perovskite Solar Cells. Acta Chim. Sinica 2019, 77,
741‒750.
[10] (a) Yao, Z.; Zhang, F.; Guo, Y.; Wu, H.; He, L.; Liu, Z.; Cai, B.; Guo, Y.;
Brett, C. J.; Li, Y.; Srambickal, C. V.; Yang, X.; Chen, G.; Widengren, J.;
Liu, D.; Gardner, J. M.; Kloo, L.; Sun, L. Conformational and composi-
tional tuning of phenanthrocarbazole-based dopant-free hole-trans-
port polymers boosting the performance of perovskite solar cells. J.
Am. Chem. Soc. 2020, 142, 17681‒17692; (b) Wan, L.; Zhang, W.; Fu,
S.; Chen, L.; Wang, Y.; Xue, Z.; Tao, Y.; Zhang, W.; Song, W.; Fang, J.
Achieving over 21% efficiency in inverted perovskite solar cells by
fluorinating a dopant-free hole transporting material. J. Mater. Chem.
A 2020, 8, 6517‒6523; (c) Li, S.; Wan, L.; Chen, L.; Deng, C.; Tao, L.; Lu,
Z.; Zhang, W.; Fang, J.; Song, W. Self-doping a hole-transporting layer
based on a conjugated polyelectrolyte enables efficient and stable
inverted perovskite solar cells. ACS Appl. Energy Mater. 2020, 3,
11724‒11731; (d) Yin, X.; Song, Z.; Li, Z.; Tang, W. Toward ideal hole
transport materials: A review on recent progress in dopant-free hole
transport materials for fabricating efficient and stable perovskite
solar cells. Energy Environ. Sci. 2020, 13, 4057‒4086.
[11] (a) Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J.
Efficient organometal trihalide perovskite planar-heterojunction
solar cells on flexible polymer substrates. Nat. Commun. 2013, 4,
2761; (b) Xue, Q.; Chen, G.; Liu, M.; Xiao, J.; Chen, Z.; Hu, Z.; Jiang,
X.-F.; Zhang, B.; Huang, F.; Yang, W.; Yip, H.-L.; Cao, Y. Improving film
formation and photovoltage of highly efficient inverted-type
perovskite solar cells through the incorporation of new polymeric
hole selective layers. Adv. Energy Mater. 2016, 6, 1502021
[12] Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting
surface-driven high-aspect-ratio crystalline grain growth for efficient
hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.
[13] (a) Zhou, X.; Hu, M.; Liu, C.; Zhang, L.; Zhong, X.; Li, X.; Tian, Y.; Cheng,
C.; Xu, B. Synergistic effects of multiple functional ionic liquid-treated
PEDOT:PSS and less-ion-defects S-acetylthiocholine chloride-passi-
vated perovskite surface enabling stable and hysteresis-free inverted
perovskite solar cells with conversion efficiency over 20%. Nano
Energy 2019, 63, 103866; (b) Zuo, C. T.; Ding, L. M. Modified PEDOT
layer makes a 1.52 V Voc for perovskite/PCBM solar cells. Adv. Energy
Mater. 2017, 7, 1601193; (c) Zhang, F.; Song, J.; Hu, R.; Xiang, Y. R.;
He, J. J.; Hao, Y. Y.; Lian, J. R.; Zhang, B.; Zeng, P. J.; Qu, J. L.
Interfacial passivation of the p-doped hole-transporting layer using
general insulating polymers for high-performance inverted
perovskite solar cells. Small 2018, 14, 1704007.
[17] (a) Wu, Y.; Zhu, W. Organic sensitizers from D–π–A to D–A–π–A:
Effect of the internal electron-withdrawing units on molecular
absorption, energy levels and photovoltaic performances. Chem. Soc.
Rev. 2013, 42, 2039‒2058; (b) Zhang, H.; Wu, Y.; Zhang, W.; Li, E.;
Shen, C.; Jiang, H.; Tian, H.; Zhu, W.-H. Low cost and stable quinoxa-
line-based hole-transporting materials with a D-A-D molecular
configuration for efficient perovskite solar cells. Chem. Sci. 2018, 9,
5919‒5928.
[14] (a) Lee, J.; Kang, H.; Kim, G.; Back, H.; Kim, J.; Hong, S.; Park, B.; Lee,
E.; Lee, K. Achieving large-area planar perovskite solar cells by intro-
ducing an interfacial compatibilizer. Adv. Mater. 2017, 29, 1606363;
(b) Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.;
Rothhardt, D.; Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T.; Neher,
D. Visualization and suppression of interfacial recombination for
high-efficiency large-area p-i-n perovskite solar cells. Nat. Energy
2018, 3, 847‒854.
[15] (a) Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.;
Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Marks, T. J.; Facchetti, A.;
Guo, X. Teaching an old anchoring group new tricks: Enabling low-
cost, eco-friendly hole-transporting materials for efficient and stable
perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 16632‒16643; (b)
Jiang, K.; Wang, J.; Wu, F.; Xue, Q.; Yao, Q.; Zhang, J.; Chen, Y.; Zhang,
G.; Zhu, Z.; Yan, H.; Zhu, L.; Yip, H. L. Dopant-free organic hole-trans-
porting material for efficient and stable inverted all-inorganic and
hybrid perovskite solar cells. Adv. Mater. 2020, 32, 1908011; (c) Xue,
Y.; Wu, Y.; Li, Y. Readily synthesized dopant-free hole transport
materials with phenol core for stabilized mixed perovskite solar cells.
[18] (a) Chen, Q.; Wang, C.; Li, Y.; Chen, L. Interfacial dipole in organic and
perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 18281‒18292; (b)
Jiang, X. Q.; Liu, X.; Zhang, J. F.; Ahmad, S.; Tu, D. D.; Qin, W.; Jiu, T.
G.; Pang, S. P.; Guo, X.; Li, C. Simultaneous hole transport and defect
passivation enabled by a dopant-free single polymer for efficient and
stable perovskite solar cells. J. Mater. Chem. A 2020, 8, 21036‒21043;
(c) You, G.; Zhuang, Q.; Wang, L.; Lin, X.; Zou, D.; Lin, Z.; Zhen, H.;
Zhuang, W.; Ling, Q. Dopant-free, donor-acceptor-type polymeric
hole-transporting materials for the perovskite solar cells with power
conversion efficiencies over 20%. Adv. Energy Mater. 2020, 10,
1903146.
[19] Wang, S.-Y.; Chen, C.-P.; Chung, C.-L.; Hsu, C.-W.; Hsu, H.-L.; Wu,
T.-H.; Zhuang, J.-Y.; Chang, C.-J.; Chen, H. M.; Chang, Y. J. Defect
passivation by amide-based hole-transporting interfacial layer
enhanced perovskite grain growth for efficient p-i-n perovskite solar
cells. ACS Appl. Mater. Interfaces 2019, 11, 40050‒40061.
[20] Agarwala, P.; Kabra, D. A review on triphenylamine (TPA) based
organic hole transport materials (HTMs) for dye sensitized solar cells
(DSSCs) and perovskite solar cells (PSCs): Evolution and molecular
Chin. J. Chem. 2021, 39, 1545-1552
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
1551