Dihydroxyacetone Variants
SCHEME 1. Aldolase-Catalyzed Assembly of Sugars
which provides expedient access to â-hydroxyamino acids.4k
Dihydroxyacetone phosphate dependent aldolases are a particu-
larly intriguing class of aldolases that catalyze the aldol addition
of dihydroxyacetone phosphate (DHAP) to a range of aldehyde
acceptors, forming a new C-C bond while creating two
hydroxy-substituted stereogenic centers. Typically, these reac-
tions take place with complete stereocontrol, and with the
appropriate aldolase enzyme, all four stereoisomeric products
SCHEME 2
investigate the use of protected forms of DHA in carbohydrate
synthesis, with the ultimate goal of mimicking the DHAP
aldolase enzymes and achieving complete stereocontrol without
the substrate restrictions endemic of natural enzymes (Scheme
6
can be generated with high levels of stereocontrol (Scheme 1).
To approach the powerful chemistry available through the
DHAP aldolases, we studied the aldolization of dihydroxyac-
etone (DHA). In aqueous media, DHA serves as a donor in the
proline-catalyzed aldol reaction; however, enantioselectivities
2
). Herein we describe a full account of our investigation.
Results and Discussion
5
k
7
8
Dihydroxyacetone Analogues as Donors. We initially
studied various protected forms of DHA to determine the most
general and synthetically useful derivative for further reactions.
In DMF, unprotected DHA gave no reaction with nitrobenzal-
dehyde when stirred at room temperature in the presence of 20
mol % (S)-proline (Table 1, entry 1). Symmetric protection of
DHA with benzyl or silyl groups (entries 2-4) or monosub-
are poor. These studies prompted us and others to further
(5) For references on organocatalyzed aldol reactions see: (a) Mase, N.;
Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III
J. Am. Chem. Soc. 2006, 128, 734-735. (b) Mitsumori, S.; Zhang, H.;
Cheong, P. H.-Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F., III J. Am. Chem.
Soc. 2006, 128, 1040-1041. (c) Mase, N.; Tanaka, F.; Barbas, C. F., III
Angew. Chem., Int. Ed. 2004, 43, 2420. (d) Mase, N.; Tanaka, F.; Barbas,
C. F., III Org. Lett. 2003, 5, 4369. (e) Cordova, A.; Notz, W.; Barbas, C.
F., III J. Org. Chem. 2002, 67, 301. (f) Chowdari, N. S.; Ramachary, D.
B.; Cordova, A.; Barbas, C. F., III Tetrahedron Lett. 2002, 43, 9591. (g)
Sakthivel, K.; Notz, N.; Bui, T.; C. F. Barbas, C. F., III J. Am. Chem. Soc.
stitution of one of the hydroxy groups with a silyl, phthalimido,
or benzyl group (entries 5 and 6) gave no product.9
When the hydroxy groups in the substrate were constrained
through an alkyl linker (entries 7-13), the aldol reaction with
nitrobenzaldehyde ensued at room temperature. The cyclohex-
anone-like structure (entries 7 and 8) gave slightly superior
results in terms of stereoselectivity; however, 2,2-dimethyl-1,3-
dioxan-5-one 1 (entries 9-11) was chosen because it was more
accessible via synthesis or commercial sources. Interestingly,
an increase in steric bulk on the donor resulted in a decrease in
stereocontrol (entries 12 and 13). Attempts to reproduce
published studies concerning the use of L-alanine as a catalyst
2
001, 123, 5260. (h) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem.
Soc. 2000, 122, 2395-2396. (i) Notz, W.; List, B. J. Am. Chem. Soc. 2000,
22, 7386. (j) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573.
k) Cordova, A.; Notz, W.; Barbas, C. F. III Chem. Commun. 2002, 67,
034. (l) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.;
1
(
3
Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (m) Northrup,
A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799. (n)
Bøgevig, A.; Kumaragurubaran, N.; Jørgensen, K. A. Chem. Commun. 2002,
10
6
20. (o) Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Angew. Chem., Int.
1
1
Ed. 2003, 42, 2785. (p) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.;
Cordova, A. Angew. Chem., Int. Ed. 2005, 44, 1343. (q) Hartikaa, A.;
Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831. (r) Torii, H.;
Nakakai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int.
Ed. 2004, 43, 1983-1986. (s) Martin, H. J.; List, B. Synlett 2003, 1901. (t)
Kofoed, J.; Nielsen, J.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003,
(8) (a) Enders, D.; Grondal, C. Angew Chem., Int. Ed. 2005, 44, 1210-
1212. (b) Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2005, 46, 3363-3367.
(c) Attempts to reproduce published studies concerning the use of L-alanine
as a catalyst for the synthesis of 2h under the conditions described by
C o´ rdova failed. Under these conditions, 2h was obtained in only 24% yield
and 78% ee; see: C o´ rdova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist,
M.; Liao, W.-W. Chem. Commun. 2005, 3586-3588. (d) Westermann, B.;
Neuhaus, C. Angew Chem., Int. Ed. 2005, 44, 4077-4079. (e) Enders, D.;
Palecek, J.; Grondal, C. Chem. Commun. 2006, 655-657. (f) Grondal, C.;
Enders, D. Tetrahedron 2006, 62, 329-337.
(9) Westermann and Neuhaus tested dihydroxyacetone phosphate as a
substrate for the Mannich reaction and observed no reaction; see ref 8d.
(10) (a) Hoppe, D.; Schmincke, H.;. Kleemann, H.-W. Tetrahedron 1989,
45, 687-694. (b) Forbes, D. C.; Ene, D. G.; Doyle, M. P. Synthesis 1998,
879-882. (c) Carman, R. M.; Handley, P. N. Aust. J. Chem. 2001, 54,
769-776. (d) Enders, D.; Voith, M.; Ince, S. J. Synthesis 2002, 1775-
1779.
1
3, 2445. (u) Tang, Z.; Jiang, F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang,
Y.-Z.; Wu, Y.-D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5755. (v)
Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346, 1141. (w)
Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V.
Org. Biomol. Chem. 2005, 3, 84. (x) Hayashi, Y.; Sumiya, T.; Takahashi,
J.; Gotoh, H.; Urushima, T.; Shoji; M. Angew. Chem., Int. Ed. 2006, 45,
9
58-961. (y) Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.
Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc. 2005, 127, 9285-9289.
(
6) (a) Takayama, S.; McGarvey, G. J.; Wong, C.-H. Annu. ReV.
Microbiol. 1997, 51, 285-310. (b) Fessner, W.-D.; Walter, C. Top. Curr.
Chem. 1996, 184, 97-194. (c) Fessner, W.-D. In Microbial Reagents in
Organic Synthesis; Servi, S., Ed.; Kluwer Academic Publishers: Dordrecht,
1
992; Vol. 381, pp 43-55. (d) Henderson, I.; Sharpless, K. B.; Wong C.-
H. J. Am. Chem. Soc. 1994, 116, 558-561.
7) Suri, J. T.; Ramachary, D. B.; Barbas, C. F., III Org. Lett. 2005, 7,
383-1385.
(
1
(11) Kim, K. S.; Hong, S. D. Tetrahedron Lett. 2000, 41, 5909-5913.
J. Org. Chem, Vol. 71, No. 10, 2006 3823