Organic Letters
Letter
In order to elucidate the mechanistic details of this system, a
comprehensive set of experiments was performed.14 Based on
the data acquired, we propose that an E2 elimination, facilitated
by DBU, followed by nucleophilic displacement in an SN2
fashion is occurring. Also, it is likely that the E2 elimination is
the rate-determining step. In this regard, we prepared and
treated (E)-(3-bromoprop-1-en-1-yl)benzene under the stand-
ard reaction conditions, which afforded allylic acetate (3a) in
quantitative yield after 15 min, supporting the high reaction
rate for SN2 reaction. Additional details for the high regio- and
stereoselectivity observed are described in the Supporting
Information.14
To demonstrate the synthetic utility and practicality of this
method, the reaction was performed on gram scale using a one-
pot procedure. Importantly, this streamlined procedure does
not compromise the efficiency of the transformation, as the
product was isolated in 81% yield (Scheme 1, eq 1) Although a
number of synthetic transformations could be envisioned for
the allylic adducts, we focused on a couple of functional group
manipulation that highlight the utility of using DBU mediated
allylation reactions. The allylic adducts derived from carbon
nucleophiles are useful for elaboration of new molecular
entities. To highlight this, we prepared the unnatural α-amino
acid precursor 5 from allylbenzene (1) in three simple steps (eq
2). Likewise, we prepared the core of wutaienin15 by reduction
of 4i, which could be prepared in two steps, in 91% yield with
3:2 dr (Scheme 1, eq 3).
In conclusion, we have documented a new entry to linear (E)
allylic compounds obtained directly from terminal alkenes. The
method complements existing approaches based on palladium
allylic C−H activation. Furthermore, evaluation of the reaction
considerations indicates that the reaction conditions using DBU
and NuH in DMSO are optimal for carbon, oxygen, nitrogen,
and sulfur nucleophiles. Across the board, this reaction protocol
results in linear (E) allylic products. Thus, this methodology
not only broadens the application of traditional Tsuji−Trost
adducts, but also provides direct disconnections for rapidly
building organic frameworks, an important consideration in
many synthetic studies.
REFERENCES
■
(1) Tsuji, J. Palladium Reagents and Catalysts. New Perspectives for the
21st Century; Wiley: Chichester, U.K., 2004.
(2) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S.
Chem. Rev. 2007, 107, 5318−5365.
(3) (a) Thiery, E.; Aouf, C.; Belloy, J.; Harakat, D.; Le Bras, J.;
Muzart, J. J. Org. Chem. 2010, 75, 1771−1774. (b) Chen, M. S.; White,
M. C. J. Am. Chem. Soc. 2004, 126, 1346−1347. (c) Delcamp, J. H.;
White, M. C. J. Am. Chem. Soc. 2006, 128, 15076−15077.
(d) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am.
Chem. Soc. 2010, 132, 15116−15119. (e) Mitsudome, T.; Umetani, T.;
Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew.
Chem., Int. Ed. 2006, 45, 481−485. (f) Henderson, W. H.; Check, C.
T.; Proust, N.; Stambuli, J. P. Org. Lett. 2010, 12, 824−827.
(4) Diao, T.; Stahl, S. S. Polyhedron 2014, 84, 96−102.
(5) Lin, B.-L.; Labinger, J. A.; Bercaw, J. E. Can. J. Chem. 2009, 87,
264−271.
(6) Vermeulen, N. A.; Delcamp, J. H.; White, M. C. J. Am. Chem. Soc.
2010, 132, 11323−11328.
(7) (a) Young, A. J.; White, M. C. Angew. Chem., Int. Ed. 2011, 50,
6824−6827. (b) Howell, J. M.; Liu, W.; Young, A. J.; White, M. C. J.
Am. Chem. Soc. 2014, 136, 5750−5754.
(8) Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem. Soc. 2009,
131, 11701−11706.
(9) Gao, W.; He, Z.; Qian, Y.; Zhao, J.; Huang, Y. Chem. Sci. 2012, 3,
883−886.
(10) (a) Rezekina, N. A.; Rakhmanov, E. V.; Lukovskaya, E. V.;
Bobylyova, A. A.; Abramov, A. A.; Chertkov, V. A.; Khoroshutin, A. V.;
Anisimov, A. V. Chem. Heterocycl. Compd. 2006, 42, 216−220.
(b) Dubois, J. E.; Toullec, J.; Fain, D. Tetrahedron Lett. 1973, 14,
4859−4860.
(11) (a) Kutsumura, N.; Niwa, K.; Saito, T. Org. Lett. 2010, 12,
3316−3319. (b) Kutsumura, N.; Toguchi, S.; Iijima, M.; Tanaka, O.;
Iwakura, I.; Saito, T. Tetrahedron 2014, 70, 8004−8009.
(12) Kikushima, K.; Moriuchi, T.; Hirao, T. Tetrahedron 2010, 66,
6906−6911.
(13) Buono, F. G.; Chidambaram, R.; Mueller, R. H.; Waltermire, R.
E. Org. Lett. 2008, 10, 5325−5328.
(14) For details of the proposed mechanism, see the Supporting
Information.
(15) Takahashi, M.; Suzuki, N.; Ishikawa, T.; Huang, H.-Y.; Chang,
H.-S.; Chen, I.-S. J. Nat. Prod. 2014, 77, 2585−2589.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, full characterization data, and NMR
spectra. The Supporting Information is available free of charge
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the University of Texas at Arlington for
financial support of this work. We also acknowledge Profs.
Javier Read de Alaniz (UCSB) and Richard B. Timmons
(UTA) for helpful discussions, the Shimadzu Center for MS
data collection, and the NSF (Grant Nos. CHE-0234811 and
CHE-0840509) for additional instrumentation.
D
Org. Lett. XXXX, XXX, XXX−XXX