X.-W. Liu et al. / Spectrochimica Acta Part A 77 (2010) 522–527
527
4. Conclusions
[9] A. Sassolas, B.D. Leca-Bouvier, L.J. Blum, Chem. Rev. 108 (2008) 109–139.
[10] B.M. Zeglis, J.K. Barton, Inorg. Chem. 47 (2008) 6452–6457.
[11] Y.Z. Ma, H.J. Yin, K.Z. Wang, J. Phys. Chem. B 113 (2009) 11039–11047.
[12] J.C. Genereux, J.K. Barton, Chem. Rev. 110 (2010) 1642–1662.
In summary, two novel Ru(II) complexes [Ru(bpy)2pyip)]2+
1
and [Ru(phen)2pyip]2+ 2 have been synthesized and character-
ized. The DNA-binding and photocleavage properties of these two
complexes have been investigated. The results show that both
complexes can bind to DNA in an intercalative mode. Also, the
two complexes are efficient DNA-photocleavers upon irradiation
at 365 nm, and complex 2 exhibits a stronger DNA-photocleavage
efficiency than complex 1. In addition, in the presence of Co2+, the
emission of DNA-[Ru(L)2pyip]2+ can be quenched. The experiment
results show that [Ru(L)2pyip]2+ exhibited the DNA “light switch”
properties. The present results should be of value in further devel-
oping luminescence DNA probe.
[13] A.E. Friedman, J.C. Chambron, J.P. Sauvage, N.J. Turro, J.K. Barton, J. Am. Chem.
Soc. 112 (1990) 4960–4962.
[14] Y. Liu, A. Chouai, N.N. Degtyareva, S.A. Lutterman, K.R. Dunbar, C. Turro, J. Am.
Chem. Soc. 127 (2005) 10796–10797.
[15] A.T. Steven, K. Roni, S. Dietrich, Inorg. Chem. 38 (1999) 5196–5197.
[16] Y.M. Chen, Y.J. Liu, Q. Li, K.Z. Wang, J. Inorg. Biochem. 103 (10) (2009)
1395–1404.
[17] M.J. Han, L.H. Gao, Y.Y. Lu, K.Z. Wang, J. Phys. Chem. B 110 (2006) 2364–2371.
[18] T. Ohno, K. Nozaki, M.A. Haga, Inorg. Chem. 31 (1992) 4251–4256.
[19] Q.L. Zhang, J.H. Liu, X.Z. Ren, H. Xu, Y. Huang, J.Z. Liu, L.N. Ji, J. Inorg. Biochem.
95 (2003) 194–198.
[20] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
[21] B.P. Sullivan, D.J. Salmon, T.J. Meyer, Inorg. Chem. 17 (1978) 3334.
[22] J. Marmur, J. Mol. Biol. 3 (1961) 208.
[23] F.C. Schaefer, G.A. Peters, J. Org. Chem. 26 (1961) 412–418.
[24] V.A. Milway, L. Zhao, T.S.M. Abedin, L.K. Thompson, Zh.Q. Xu, Polyhedron 22
(2003) 1271–1279.
Acknowledgements
[25] G.F. Smith, F.W. Cagle, J. Org. Chem. 12 (1947) 781–784.
[26] E. Amouyal, A. Homsi, J.C. Chambron, J.P. Sauvage, J. Chem. Soc. Dalton Trans.
(1990) 1841.
[27] J. Bolger, A. Gourdon, E. Ishow, J.P. Launay, Inorg. Chem. 35 (1996) 2937–2944.
[28] E. Ishow, A. Gourdon, J.P. Launay, Chem. Commun. (1998) 1909.
[29] G. Cohen, H. Eisenberg, Biopolymers 8 (1969) 45.
[30] X.L. Wang, W.Y. Zheng, H.Y. Lin, G.C. Liu, Y.Q. Chen, J.N. Fang, Tetrahedron Lett.
(50) (2009) 1536–1538.
We are grateful to the supports of the Natural Science Foun-
dation of Hunan Province (07JJ3015), the Scientific Research
Foundation of Hunan Provincial Education Department and the
Open Project Program of Key Laboratory of Environmentally
Friendly Chemistry and Applications of Ministry of Education
(10HJYH05).
[31] A. Ambroise, B.G. Maiya, Inorg. Chem. 39 (2000) 4256–4263.
[32] J.G. Liu, B.H. Ye, H. Li, L.N. Ji, R.H. Li, J.Y. Zhou, J. Inorg. Biochem. 73 (1999)
117–122.
Appendix A. Supplementary data
[33] S. Arounaguiri, B.G. Maiya, Inorg. Chem. 38 (1999) 842–843.
[34] J.D. McGhee, P.H. von Hippel, J. Mol. Biol. 86 (1974) 469–489.
[35] S.R. Dalton, S. Glazier, B. Leung, S. Win, C. Megatulski, S.J.N. Burgmay, J. Biol.
Inorg. Chem. 13 (2008) 1133–1148.
Supplementary data associated with this article can be found, in
[36] C.V. Kumar, N.J. Turro, J.K. Barton, J. Am. Chem. Soc. 107 (1985) 5518.
[37] S. Satyanarayana, J.C. Dabroniak, J.B. Chaires, Biochemistry 31 (1992) 9319.
[38] S. Satyanaryana, J.C. Daborusak, J.B. Chaires, Biochemistry 32 (1993) 2573.
[39] M. Roy, B. Pathak, A.K. Patra, E.D. Jemmins, M. Nethaji, A.R. Chakravarty, Inorg.
Chem. 46 (2007) 1112–11132.
[40] H.Y. Mei, J.K. Barton, Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 1339–1343.
[41] T.K. Schoch, J.L. Hubbard, C.R. Zoch, G.B. Yi, M. Soerlie, Inorg. Chem. 35 (1996)
4383–4390.
[42] L.F. Tan, H. Chao, Y.F. Zhou, L.N. Ji, Polyhedron 26 (2007) 3029–3036.
[43] L.F. Tan, H. Chao, Inorg. Chim. Acta 360 (2007) 2016–2022.
[44] Y.J. Liu, H. Chao, Y.X. Yuan, H.J. Yu, L.N. Ji, Inorg. Chim. Acta 359 (2006)
3807–3814.
References
[1] L.N. Ji, X.H. Zou, J.G. Liu, Coord. Chem. Rev. 216–217 (2001) 513–536.
[2] M.J. Clarke, Coord. Chem. Rev. 236 (2003) 209–233.
[3] C. Metcalfe, J.A. Thomas, Chem. Soc. Rev. 32 (2003) 215–224.
[4] K.A. O’Donoghue, J.M. Kelly, P.E. Kruger, Dalton Trans. (2004) 13–15.
[5] M.K. Nazeeruddin, C. Klein, P. Liska, M. Grätzel, Coord. Chem. Rev. 249 (2005)
1460–1467.
[6] A. Mihailovic, L. Vladescu, M. McCauley, E. Ly, M.C. Williams, E.M. Spain, M.E.
Nun˜ez, Langmuir 22 (2006) 4699–4709.
[7] M.J. Han, Z.M. Duan, Q. Hao, S.Z. Zheng, K.Z. Wang, J. Phys. Chem. C 111 (2007)
16577–16585.
[45] J.K. Barton, A.L. Raphael, J. Am. Chem. Soc. 106 (1984) 2466–2468.
[8] R.M. Hartshorn, J.K. Barton, J. Am. Chem. Soc. 114 (1992) 5919–5925.