7404
L. Routaboul et al. / Tetrahedron Letters 46 (2005) 7401–7405
investigated with regard to critical reaction parameters
such as solvent, temperature, rhodium precursor and
pressure. Selected results are shown in Table 2. The
purity of the rhodium precursor strongly influences the
yield of the reaction (Table 2, entries 1 and 2). In gen-
eral, yields of amines are better when the reaction was
carried out in the presence of a cationic rhodium precur-
sor. It is important to note that our catalytic system is
efficient even at 40 °C (Table 2, entry 5), which is impor-
tant because the regioselectivity towards the branched
amine is significantly better at lower temperature (Table
2, compare entries 1 and 6). Modification of the total
pressure seems to have only a slight effect on both the
yield and the regioselectivity.
should be useful for the synthesis of a wide variety of
known and new amphetamine derivatives.
Acknowledgements
This work has been supported by the State of Mecklen-
burg-Western Pommerania, and the ÔBundesministerium
fur Bildung und Forschung (BMBF)Õ. We thank Mrs. C.
¨
Mewes, Mrs. H. Baudisch, Mrs. A. Lehmann and Mrs.
S. Buchholz (all IfOK) for their excellent support.
References and notes
Finally, we tested the efficiency of the catalytic system in
the hydroaminomethylation of arylethylenes with vari-
ous amines. The results are summarized in Table 3.
para-Substituted styrenes react with aniline in the pres-
ence of the catalytic system quantitatively to give the
corresponding amines (Table 3, entries 2 and 3). Appar-
ently, electronic effects of the substituents in the 4-posi-
tion of styrene have only little influence on the yield and
selectivity of the reaction. However, hydroamino-meth-
ylation of 4-methoxystyrene with cyclohexylamine affor-
ded only 17% of 3d and 4d with a low iso/n-ratio (Table
3, entry 4).
1. For an excellent review see: Eilbracht, P.; Ba¨rfacker, L.;
Buss, C.; Hollmann, C.; Kitsos-Rzychon, B. E.; Krane-
mann, C.; Rische, T.; Roggenbuck, R.; Schimdt, A. Chem.
Rev. 1999, 99, 3329.
2. (a) Ko¨hling, P.; Schmidt, A. M.; Eilbracht, P. Org. Lett.
2003, 18, 3213; (b) Rische, T.; Ba¨rfacker, L.; Eilbracht, P.
Eur. J. Org. Chem. 1999, 3, 653; (c) Rische, T.; Kitsos-
Rzychon, B.; Eilbracht, P. Tetrahedron 1998, 54, 2723; (d)
Kranemann, C. L.; Eilbracht, P. Synthesis 1998, 71; (e)
Rische, T.; Eilbracht, P. Synthesis 1997, 1331.
3. Selected examples: (a) Ahmed, M.; Seayad, A. M.;
Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2003, 42,
5615; (b) Seayad, A. M.; Selvakumar, K.; Ahmed, M.;
Beller, M. Tetrahedron Lett. 2003, 44, 1679; (c) Seayad, A.
M.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller,
M. Science 2002, 297, 1676; (d) Zimmermann, B.; Herwig,
J.; Beller, M. Angew. Chem., Int. Ed. 1999, 38, 2372; (e)
Schaffrath, H.; Keim, W. J. Mol. Catal. 1999, 140, 107; (f)
Brunet, J. J.; Neibecker, D.; Agbossou, F.; Srivastav, R. S.
J. Mol. Catal. 1994, 87, 223; (g) Baig, T.; Molinier, J.;
Kalck, P. J. Organomet. Chem. 1993, 455, 219; (h) To¨ro¨s,
S.; Gemes-Pesci, I.; Heil, B.; Maho, S.; Tubar, Z. J. Chem.
Soc., Chem. Commun. 1992, 585; (i) Baig, T.; Kalck, P. J.
Chem. Soc., Chem. Commun. 1992, 1373.
4. (a) Breit, B. Tetrahedron Lett. 1998, 39, 5163; (b) Nagy, E.;
Heil, B.; Toro¨s, S. J. Organomet. Chem. 1999, 586, 10.
5. Ahmed, M.; Seayad, A. M.; Jackstell, R.; Beller, M. J.
Am. Chem. Soc. 2003, 125, 10311.
6. Seayad, J.; Tillack, A.; Beller, M. Angew. Chem., Int. Ed.
2004, 43, 3368.
7. (a) Tewari, A.; Hein, M.; Zapf, A.; Beller, M. Tetrahedron
Lett. 2004, 45, 7703; (b) Michalik, D.; Kumar, K.; Fun
Lo, W.; Tillack, A.; Zapf, A.; Arlt, M.; Heinrich, T.;
Beller, M. Tetrahedron Lett. 2004, 45, 2057; (c) Kumar,
K.; Michalik, D.; Garcia Castro, Y.; Tillack, A.; Zapf, A.;
Arlt, M.; Heinrich, T.; Bo¨ttcher, H.; Beller, M. Chem. Eur.
J. 2004, 10, 746; (d) Seayad, J.; Tillack, A.; Hartung, C.
G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795; (e) Beller,
M.; Breindl, C. Chemosphere 2001, 43, 21; (f) Hartung, C.
G.; Breindl, C.; Tillack, A.; Beller, M. Tetrahedron 2000,
56, 5157; (g) Beller, M.; Breindl, C.; Riermeier, T. H.;
Eichberger, M.; Trauthwein, H. Angew. Chem., Int. Ed.
1998, 37, 3389.
Reaction of 2-vinylpyridine with morpholine proceeds
with an excellent regioselectivity to give 66% of 3e and
4e (Table 3, entry 5). This is a rare successful example
of using a heteroaromatic olefin as substrate in hydro-
aminomethylations. In the reaction of vinylferrocene
with aniline amines, 3f, 4f are obtained in 55% with a
good iso/n-ratio (Table 3, entry 6). In case of sterically
more demanding b-methylstyrene, longer reaction time
and more catalyst are necessary to obtain a reasonable
yield (50%) of 3g, 4g (Table 3, entry 7). It is noteworthy
that the hydroaminomethylation of this internal olefin
occurs with high regioselectivity. Hydroaminomethyl-
ation of styrene with N-methylaniline afforded 3h, 4h in
75% (Table 3, entry 8). This demonstrated the feasibility
of using secondary amines in the reaction. In addition,
different substituted anilines have been hydroaminome-
thylated easily (Table 3, entries 9–11). 2-Anisidine affor-
ded 97% of 3i and 4i with an iso/n-ratio of 88:12. Under
the same reaction conditions, 65% of 3j and 4j are ob-
tained from 4-anisidine. Here, side-products formed by
bishydroaminomethylation were observed. Amine 3k
and 4k are obtained in excellent yield from styrene
and 4-trifluoromethylaniline (Table 3, entry 12). Finally,
reaction of styrene with 3- and 4-aminobenzonitrile
afforded 3l and 3m. A longer reaction time allowed us
to obtain both products nearly quantitatively (Table 3,
entries 13–15).
8. Seijas, A. J.; Vazquez-Tato, M. P.; Martinez, M. M.
Synlett 2001, 875.
9. Lin, Y. S.; El Ali, B.; Alper, H. Tetrahedron Lett. 2001, 42,
2423.
In conclusion, we have shown that [Rh(cod)2BF4]/dppf
in the presence of HBF4 catalyzes the hydroaminome-
thylation of aromatic olefins with different amines with
good regioselectivity towards the branched products.
The described catalyst system permits for the first time
hydroaminomethylation of styrenes under mild condi-
tions (low pressure; 60 °C). The reported procedure
10. Kostas, I. D. J. Chem. Res. (S) 1999, 630.
11. General procedure: Hydroaminomethylation reactions
were carried out in a Parr stainless steel autoclave
(100 mL). In a typical experiment (Table 1, entry 10), a
Schlenk flask was charged with [Rh(cod)2BF4] (0.25 mol %),