Bhagat and Chakraborti
SCHEME 1. Mg(ClO4)2-Catalyzed 3-CR of an Aldehyde/
Ketone, an Amine, and Di-/Trialkyl Phosphite Leading to
the Formation of r-Aminophosphonate
TABLE 1. Mg(ClO4)2-Catalyzed Synthesis of r-Aminophosphonate
during the Reaction of 1, 2, and DMP under Various Conditionsa
entry
catalyst
solvent T (°C) time (h) yieldb,c (%)
1
2
3
4
5
6
7
8
Mg(ClO4)2
Mg(ClO4)2
Mg(ClO4)2
Mg(ClO4)2
Mg(ClO4)2
neat
neat
DCM
MeCN
THF
80
rt
rt
rt
rt
rt
80
rt
0.5
6
24
24
24
10
6
85
85
81
81
80
Mg(ClO4)2‚6H2O neat
40d
60d
nild
Mg(ClO4)2‚6H2O neat
Mg(ClO4)2
H2O
24
of the amine substrates due to salt formation. Thus, metal triflate-
catalyzed reactions are often carried out in the presence of
stoichiometric amounts of additional reagents such as molecular
sieves, MgSO4, etc. This brings the attention to triflimides6 as
HNTf2 is a weaker Brønsted acid than TfOH7 and ligand
exchange is not common with triflimides.8 However, metal
triflimides are costly, very few are available commercially, and
they require additional efforts and costly reagents to prepare.9
Hence, we focused our attention on catalysts derived from
HClO4 as it is weaker than TfOH. Recently, we reported metal
perchlorates as efficient electrophilic activation catalysts for
acylation, imine formation, thia-Michael addition, and acylal
formation reactions.10
a 1 (2.5 mmol) was treated with 2 (2.5 mmol) and DMP (2.5 mmol) in
the presence of the catalyst (5 mol %) under solvent-free conditions (except
for entries 3-5 and 8). b Yield of the isolated and purified 3. c The product
was characterized by the IR, H and 13C NMR, and MS. d The unreacted
1
starting materials remained unchanged (TLC).
order of mixing the substrates did not influence the product
yield. The use of organic solvents required longer reaction times
(entries 3-5, Table 1), but no significant amount of 3 was
formed in carrying out the reaction in water (entry 8, Table 1).
However, the use of magnesium perchlorate hydrate [Mg-
(ClO4)2‚6H2O] was less effective (entries 6 and 7, Table 1). A
similar decrease in the catalytic property of Mg(ClO4)2‚6H2O
compared to that of Mg(ClO4)2 has been observed in the
acylation reactions.10a,11
Results and Discussion
We planned to evaluate the catalytic property of Mg(ClO4)2
with other metal perchlorates during the three-component reac-
tion of 1, 2, and DMP (Table 2). The best results were obtained
with Mg(ClO4)2 either at rt for 6 h or at 80 °C for 30 min. In all
Herein, we report that Mg(ClO4)2 is an extremely efficient
catalyst for the formation of R-aminophosphonate by a one-
pot, three-component reaction of an aldehyde/ketone, an amine,
and a di-/trialkyl phosphite under solvent-free conditions
(Scheme 1).
(3) (a) Microreactor: Van Meenen, E.; Moonen, K.; Acke, D.; Stevens,
C. V. ARKIVOC 2006 (i), 31. (b) p-TsOH: Kaboudin, B.; Moradi, K.
Tetrahedron Lett. 2005, 46, 2989. (c) Me2S+BrBr-: Kaboudin, B.; Moradi,
K. Tetrahedron Lett. 2005, 46, 1209. (d) Microwave heating: Kabachnik,
M. M.; Zobnina, E. V.; Beletskaya, I. P. Synlett 2005, 1393. (e) SiO2 under
microwave heating: Zhan, Z.-P.; Yang, R.-F.; Li, J.-P. Chem. Lett. 2005,
34, 1042. (f) In(OTf)3-MgSO4: Ghosh, R.; Maiti, S.; Chakraborty, A.;
Maiti, D. K. J. Mol. Catal. A 2004, 210, 53. (g) M(OTf)n: Firouzabadi,
H.; Iranpoor, N.; Sobhani, S. Synthesis 2004, 2692. (h) Thiourea dvt.: Joly,
G. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 4102. (i) Al(tetra-
tert-butylphthalocyanine)Cl-MgSO4: Matveeva, E. D.; Podrugina, T. A.;
Tishkovskaya, E. V.; Tomilova, L. G.; Zefirov, N. S. Synlett 2003, 2321.
(j) Ionic liquid: Yadav, J. S.; Reddy, B. V. S.; Sreedhar, P. Green Chem.
2002, 4, 436-438. (k) Ln(OTf)3 in ionic liquid: Lee, S.; Park, J. H.; Kang,
J.; Lee, J. K. Chem. Commun. 2001, 1698. (l) Al2O3 under microwave
heating: Kaboudin, B.; Nazari, R. Tetrahedron Lett. 2001, 42, 8211. (m)
Montmorillonite KSF under microwave heating: Yadav, J. S.; Reddy, B.
V. S.; Madan, C. Synlett 2001, 1131. (n) TaCl5-SiO2: Chandrasekhar, S.;
Prakash, S. J.; Jagadeshwar, V.; Narsihmulu, C. Tetrahedron Lett. 2001,
42, 5561. (o) Sc(O3SOC12H25)3: Manabe, K.; Kobayashi, S. Chem.
Commun. 2000, 669. (p) InCl3: Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett.
1999, 1, 1141. (q) Ln(OTf)3-4 Å MS/MgSO4: Qian, C.; Huang, T. J. Org.
Chem. 1998, 63, 4125.
(4) Olah, G. A.; Prakash, G. K. S. Superacids; Wiley: New York, 1985.
(5) Dumeunier, R.; Marko´, I. E. Tetrahedron Lett. 2004, 45, 825.
(6) Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Synlett 1990,
839.
(7) Foropoulos, J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
(8) Chakraborti, A. K.; Shivani J. Org. Chem. 2006, 71, 5785 and
references therein.
(9) Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 265.
(10) (a) Chakraborti, A. K.; Sharma, L.; Gulhane, R.; Shivani. Tetra-
hedron 2003, 59, 7661. (b) Chakraborti, A. K.; Gulhane, R.; Shivani. Synlett
2003, 1805. (c) Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Tetrahedron
Lett. 2004, 45, 7641. (d) Garg, S. K.; Kumar, R. Chakraborti, A. K. Synlett
2005, 1370. (e) Kumar, R.; Thilagavathi, R.; Gulhane, R.; Chakraborti, A.
K. J. Mol. Catal. A: Chem. 2006, 250, 227. (f) Shivani; Chakraborti, A.
K. J. Mol. Catal. A: Chem. 2006, doi:10.1016/j.molcata.2006.08.047. (g)
Shivani; Gulhane, R.; Chakraborti, A. K. J. Mol. Catal. A: Chem. 2006,
doi:10.1016/j.molcata.2006.09.0415.
To determine the best experimental conditions, the reaction
of 4-methoxybenzaldehyde (1) as a representative less electro-
philic aldehyde, 2,4-dinitroaniline (2) as an electron-deficient
and sterically hindered amine, and dimethyl phosphite (DMP)
was considered as the model (Table 1). The best results were
obtained in the presence of Mg(ClO4)2 at rt affording the desired
R-aminophosphonate dimethyl [(2,4-dinitrophenylamino)-(4-
methoxyphenyl)methyl]phosphonate (3) in 85% yield after 6 h
at rt and after 30 min at 80 °C (entries 1 and 2, Table 1). The
(1) Enzyme inhibitory: (a) LAP: Giannousis, P. P.; Bartlett, P. A. J.
Med. Chem. 1987, 30, 1603. Grembecka, J.; Mucha, A.; Cierpicki, T.;
Kafarski, P. J. Med. Chem. 2003, 46, 2641. (b) Renin: Allen, M. A.; Fuhrer,
W.; Tuck, B.; Wade, R.; Wood, J. M. J. Med. Chem. 1989, 32, 1652.(c)
Class C â-lactamase: Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C.
H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature
1978, 272, 56. Pratt, R. F. Science 1989, 246, 917. (d) Human collagenase:
Bird, J.; De Mello, R. C.; Harper, G. P.; Hunter, D. J.; Karran, E. H.;
Markwell, R. E.; Miles-Williams, A. J.; Rahman, S. S.; Ward, R. S. J. Med.
Chem. 1994, 37, 158. (e) Phosphatase: Beers, S. A.; Schwender, C. F.;
Loughney, D. A.; Malloy, E.; Demarest, K.; Jordan, J. Bioorg. Med. Chem.
1996, 4, 1693. (f) S-Adenosyl-L-homocysteine hydrolase: Steere, J. A.;
Sampson, P. B.; Honek, J. F. Bioorg. Med. Chem. Lett. 2002, 12, 457. (g)
R(2-6)Sialyltransferase transition-state analogue: Skropeta, D.; Schwo¨rer,
R.; Schmidt, R. R. Bioorg. Med. Chem. Lett. 2003, 13, 3351. Antifungal:
(h) Maier, L.; Diel, P. J. Phosphorous, Sulfur, Silicon 1991, 57, 57.
Antioxidants: (i) Bonarska, D.; Kleszczyska, H.; Sarapuk, J. Cell. Mol.
Biol. Lett. 2002, 7, 929. Herbicidal: (j) NÄ ska, H.; Bonarska, D.; Bielecki,
K.; Sarapuk, J. Cell. Mol. Biol. Lett. 2002, 7, 929.
(2) (a) Kabachnik, M. I.; Medve, T. Y. Dokl. Akad. Nauk SSSR 1952,
83, 689; Chem. Abstr. 1953, 47, 2724b. (b) Fields, E. K. J. Am. Chem.
Soc. 1952, 74, 1528. (c) Pudovik, A. N. Dokl. Akad. Nauk SSSR 1952, 83,
865; Chem. Abstr. 1953, 47, 4300. (d) Petrov, K. A.; Chauzov, V. A.;
Erokhina, T. S. Usp. Khim. 1974, 43, 2045; Chem. Abstr. 1975, 82, 43486.
(e) Redmore, D. Topics in Phosphorous Chemistry; Grifith, E. J., Grayson,
M., Eds.; John Wiley & Sons: New York, 1976; Vol. 8, p 515. (f)
Cherkasov, R. A.; Galkin, V. I. Russ. Chem. ReV. 1998, 67, 857. (g) Fields,
S. C. Tetrahedron 1999, 55, 12237. (h) Moonen, K.; Laureyn, I.; Stevens,
C. V. Chem. ReV. 2004, 104, 6177.
(11) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi,
M.; Rinaldi, S.; Sambri, L. Synlett 2003, 39.
1264 J. Org. Chem., Vol. 72, No. 4, 2007