Basic Ionic Liquid as Catalyst and Reaction Medium
FULL PAPER
ported.[10] This ionic liquid is highly stable under ambient condi-
tions and can be used in reactions without any difficulty, as recently
[4] a) CeCl
: G. Bartoli, M. Bosco, E. Marcantoni, M. Petrini, L.
3
Sambri, E. Torregiani, J. Org. Chem. 2001, 66, 9052–9055; b)
[
10–12]
InCl : T. P. Loh, L. L. Wei, Synlett 1998, 975–976; c) Yb-
reported.
sodium sulfate, and the filtrate was then dried under vacuum at
0 °C for 24 h to eliminate the residual water.
The ionic liquid was firstly dried with anhydrous
3
(
OTf)
Org. Chem. 2000, 6, 879–892; d) Bi(OTf)
Alam, S. R. Adapa, Synlett 2003, 720–722; e) Cu(OTf)
Wabnitz, J. B. Spencer, Tetrahedron Lett. 2002, 43, 3891–3894;
f) LiClO : N. Azizi, M. R. Saidi, Tetrahedron 2004, 60, 383–
87; g) β-Cyclodextrin: K. Surendra, N. S. Krishnaveni, R.
3
: D. Enders, S. F. Muller, G. Raabe, J. Runsink, Eur. J.
: R. Varala, M. M.
: T. C.
3
9
2
General Procedures for Michel Additions between Amines and Con-
jugated Alkenes Promoted by [bmIm]OH: The amine (1 mmol) and
the α,β-unsaturated carbonyl compound (1.2 mmol) were added to
4
3
Sridhar, K. R. Rao, Tetrahedron Lett. 2006, 47, 2125–2127; h)
Polyethylene glycol: R. Kumar, P. Chaudhary, S. Nimesh, R.
Chandra, Green Chem. 2006, 8, 356–358; i) Heterogeneous so-
lid acids: N. S. Shaikh, V. H. Deshpande, A. V. Bedekar, Tetra-
[bmIm]OH (1 mL) in a 10 mL conical flask and the mixture was
shaken at ambient temperature for 10 min. The reaction mixture
was extracted from the ionic liquid phase with ethyl ether
(10.0 mLϫ3), and the organic layer was dried with anhydrous so-
2
hedron 2001, 57, 9045–9048; j) Cu(acac) immobilized in ionic
dium sulfate and concentrated under reduced pressure. The residue
was purified by flash column chromatography (silica gel, petroleum
ether/ethyl acetate 1:1, v/v) to provide the adduct in 98% isolated
yield. The ionic liquid left in the conical flask was further washed
with diethyl ether, dried under vacuum at 90 °C for 2 h to eliminate
liquids: M. L. Kantam, V. Neeraja, B. Kavita, B. Neelima,
M. K. Chaudhuri, S. Hussain, Adv. Synth. Catal. 2005, 347,
763–766.
[
5] a) Z. C. Zhang, Adv. Catal. 2006, 49, 153–237; b) P. J. Wasser-
scheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772–3789;
c) T. Welton, Chem. Rev. 1999, 99, 2071–2083; d) T. Welton,
Coord. Chem. Rev. 2004, 248, 2459–2477; e) H. Olivier-Bourbi-
gou, L. Magna, J. Mol. Catal. A: Chem. 2002, 182, 419–437;
f) L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke,
Nature 1999, 399, 28–29; g) R. A. Brown, P. Pollet, E. Mckoon,
C. A. Eckert, C. L. Liotta, P. G. Jessop, J. Am. Chem. Soc.
any water trapped from moisture, and reused for subsequent reac-
1
tions. All organic compounds are fully characterized by IR,
H
NMR, and 1 C NMR spectroscopy. These values were in good
3
agreement with those reported.[
4,8,17]
Synthesis of 3a on a Larger Scale (0.2 mol): Piperidine (200 mmol)
and methyl acrylate (240 mmol) were added to [bmIm]OH (5 mL)
in a 100 mL round flask and the mixture was stirred at ambient
temperature for 15 min. The excess methyl acrylate was evaporated
and recovered, and the product was distilled directly from the reac-
tion flask under reduced pressure to provide 3a (8.5 g). The remain-
ing [bmIm]OH was reused without any additional operation. The
reaction was repeated eight times without significant loss of ac-
tivity.
2001, 123, 1254–1255; h) W. Leitner, Nature 2003, 423, 930–
931; i) X. F. Yang, M. W. Wang, C. J. Li, Org. Lett. 2003, 5,
657–660; j) A. Kumar, S. S. Pawar, J. Org. Chem. 2004, 69,
1419–1420.
[
6] a) J. A. Boon, J. A. Levinsky, J. L. Pflug, J. S. Wilkes, J. Org.
Chem. 1986, 51, 480–483; b) Y. Chauvin, H. Olivier-Bourbigou,
Chemtech 1995, 25, 26–30; c) C. E. Song, D. U. Jung, S. Y.
Choung, E. J. Roh, S. G. Lee, Angew. Chem. Int. Ed. 2004, 43,
6
183–9185; d) R. Sheldon, Chem. Commun. 2001, 2399–2407;
e) Y. J. Kim, R. S. Varma, Tetrahedron Lett. 2005, 46, 7447–
449; f) B. C. Ranu, R. Jana, J. Org. Chem. 2005, 70, 8621–
Supporting Information (see also the footnote on the first page of
this article): Experimental procedures, 1H NMR and C NMR
spectroscopic data.
7
13
8624; g) A. L. Zhu, T. Jiang, D. Wang, B. X. Han, L. Liu, J.
Huang, J. C. Zhang, D. H. Sun, Green Chem. 2005, 7, 514–517.
7] a) J. Z. Gui, X. H. Cong, D. Liu, X. T. Zhang, Z. D. Hu, Z. L.
Sun, Catal. Commun. 2004, 5, 473–477; b) T. Joseph, S. Sahoo,
S. B. Halligudi, J. Mol. Catal. A: Chem. 2005, 234, 107–110; c)
H. P. Zhu, F. Yang, J. Tang, M. Y. He, Green Chem. 2003, 5,
[
[
Acknowledgments
3
1
8–39; d) G. Driver, K. E. Johnson, Green Chem. 2003, 5, 163–
69; e) G. J. Kemperman, T. A. Roeters, P. W. Hilberink, Eur.
We gratefully acknowledge financial support from the Natural Sci-
ence Foundation of China (no. 20572099).
J. Org. Chem. 2003, 9, 1681–1686.
8] a) J. McNulty, S. Cheekoori, J. J. Nair, V. Larichev, A. Capretta,
A. J. Robertson, Tetrahedron Lett. 2005, 46, 3641–3644; b)
Y. R. Jorapur, C. H. Lee, D. Y. Chi, Org. Lett. 2005, 7, 1231–
1
234; c) H. Y. Shen, Z. M. A. Judeh, C. B. Ching, Tetrahedron
[
[
[
1] a) Y. Hayashi, J. J. Rode, E. J. Corey, J. Am. Chem. Soc. 1996,
Lett. 2003, 44, 981–983; d) E. J. Corey, Y. Bo, J. Busch-Pe-
tersen, J. Am. Chem. Soc. 1998, 120, 13000–13001; e) M. Hori-
kawa, J. Busch-Peterson, E. J. Corey, Tetrahedron Lett. 1999,
118, 5502–5503; b) G. Bartoli, C. Cimarelli, E. Marcantoni, G.
Palmieri, M. Petrini, J. Org. Chem. 1994, 59, 5328–5335; c) S.
Hashiguchi, A. Kawada, H. Natsugari, J. Chem. Soc., Perkin
Trans. 1 1991, 2435–2444; d) H. C. Liang, S. K. Das, J. R. Gal-
van, S. M. Sato, Y. L. Zhang, L. N. Zakharov, A. L. Rheingold,
Green Chem. 2005, 7, 410–412.
4
1
0, 3843–3846; f) E. J. Corey, F. Y. Zhang, Org. Lett. 1999, 1,
287–1290; g) J. S. Yadav, B. V. S. Reddy, G. Baishya, J. Org.
Chem. 2003, 68, 7098–7100; h) B. C. Ranu, S. S. Dey, Tetrahe-
dron 2004, 60, 4183–4188; i) L. W. Xu, J. W. Li, S. L. Zhou,
C. G. Xia, New J. Chem. 2004, 28, 183–184.
2] a) G. Cardillo, C. Tomasini, Chem. Soc. Rev. 1996, 25, 117–
1
28; b) S. Fustero, B. Pina, E. Salavert, A. Navarro, M. C. Ra-
[
9] S. Abello, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre,
mirez de Arellano, A. S. Fuentes, J. Org. Chem. 2002, 67, 4667–
J. E. Sueiras, D. Tichit, B. Coq, Chem. Commun. 2004, 1096–
4679; c) The Organic Chemistry of β-Lactams (Ed.: G. I.
1097.
George), VCH, New York, 1993; d) E. Juaristi, H. Lopez-Ruiz,
Curr. Med. Chem. 1999, 6, 983–1004; e) D. Seebach, J. L. Mat-
thews, Chem. Commun. 1997, 2015–2022.
[
[
10] B. C. Ranu, S. Banerjee, Org. Lett. 2005, 7, 3049–3052.
11] J. M. Xu, B. K. Liu, W. B. Wu, C. Qian, Q. Wu, X. F. Lin, J.
Org. Chem. 2006, 71, 3991–3993.
3] a) P. Perlmutter, Conjugate Addition Reactions, in: Organic Syn-
thesis, Pergamon, New York, 1992, p. 114; b) N. B. Ambhaikar,
J. P. Shyger, D. C. Liotta, J. Am. Chem. Soc. 2003, 125, 3690–
[
12] B. C. Ranu, R. Jana, Eur. J. Org. Chem. 2006, 16, 3767–3770.
[13] a) S. K. Poole, P. H. Shetty, C. F. Poole, Anal. Chim. Acta 1989,
218, 241–263; b) K. Fukumoto, M. Yoshizawa, H. Ohno, J.
Am. Chem. Soc. 2005, 127, 2398–2399.
[14] a) A. Aggarwal, N. L. Lancaster, A. R. Sethi, T. Welton, Green
Chem. 2002, 4, 517–520; b) J. Ross, J. L. Xiao, Chem. Eur. J.
2003, 9, 4900–4906.
3
691; c) M. Sani, L. Bruche, G. Chiva, S. Fustero, J. Piera, A.
Volonterio, M. Zanda, Angew. Chem. Int. Ed. 2003, 42, 2060–
063; d) L. Fadini, A. Togni, Chem. Commun. 2003, 30–31; e)
J. C. Adrian, M. L. Snapper, J. Org. Chem. 2003, 68, 2143–
150.
2
2
Eur. J. Org. Chem. 2007, 1798–1802
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1801