3582
K. Ramachandiran et al. / Tetrahedron Letters 52 (2011) 3579–3583
NH
MeO
Me
N
NH
Me
H
1h
2
N
Me
10 mol % catalyst
1.2 equiv of oxidant
Neat, 70 oC
H
MeO
3b
17%
N
N
NH
H
5
Me
MeO
21%
N
N
H
OMe
1d
H
3f
27%
Scheme 5. Synthesis of symmetric and unsymmetric 1,1-bis-indolylmethanes.
H
H
N
H
O
O
H
N
N
Pd
OAc
N
PdOAc
N
Pd(OAc)2
AcO Pd
N
Ph
8
7
2c
6
O
PdHOAc
Pd
H
N
H
N
..
..
H
N
H
N
N
N
Et3NH
H
9
10
N
H
3a
Scheme 6. Plausible mechanism.
Huang et al. have reported the sp3 C–H bond activation of 2,6-
lutidine by Pd(II) acetate which prompted us to propose the mech-
anism intermediate 6 (Scheme 6). Although the mechanistic details
of this transformation are not clear at the moment, on the basis of
the experimental results, a plausible reaction pathway is outlined.
Compound 2c is coordinated to Pd(OAc)2 to form complex 6,6 after
which C–H bond cleavage might proceed via agnostic three–cen-
ter–two-electron interaction to form the intermediate 7 at elevated
temperature, in which the acetate (OAcꢀ) serves as an internal
base. Intermediate 7 might be coordinated with indole 1 giving
the intermediate 8, which would undergo coupling to produce
the adduct 9. Subsequent protonolysis would form 10 of which fur-
ther undergo C–N bond cleavage and subsequent addition of indole
results in the formation of product 3a. We found ethyl aniline as
byproduct in the reaction mixture by using NMR spectrum.
In conclusion, we have developed a novel method of alkylation
of indole via Pd-catalyzed oxidative coupling of aliphatic sp3 C–H
bond of tertiary amines with indole followed by C–N bond cleavage
and subsequent addition of indole to form 1,1-bisindolylmethanes.
This new protocol involves the migration of alkane chain from ter-
tiary amine to indole and provides a facile route to 1,1-bis-
indolylmethanes under neat condition. Current work is aimed at
elucidating the scope of potential substrates as well as gaining fur-
ther insights into the mechanism of these transformations.
References and notes
1. For a minor review on activation of sp3 C–H bonds in the R-position to a nitrogen
atom see: (a) Doye, S. Angew. Chem., Int. Ed. 2001, 40, 3351; (b) Nugent, W. A.;
Ovenall, D. W.; Holmes, S. J. Organometallics 1983, 2, 161; (c) Chatani, N.; Asaumi,
T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000,
122, 12882; (d) Yi, C. S.; Yun, S. Y. Organometallics 2004, 23, 5392.
2. (a) Murahashi, S.-I. Angew. Chem., Int. Ed. Engl. 1995, 34, 2443; (b) Murahashi,
S.-I.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S. J. Am.
Chem. Soc. 1990, 112, 7820.
3. Lu, C. C.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 15818.
4. (a) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125,
15312; (b) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810; (c) Li, Z.; Li, C. J. J.
Am. Chem. Soc. 2005, 127, 3672.
5. Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc. 2006, 128,
5648.
6. Qian, B.; Guo, S.; Shao, U. J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. J. Am. Chem. Soc.
2010, 132, 3650.
7. Guo, X.; Pan, S.; Liu, J.; Li, Z. J. Org. Chem. 2009, 74, 8848.
8. (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172; (b) Labinger, J. A.; Bercaw, J.
E. Nature 2002, 417, 507; (c) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471; (d)
Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013; (e)
Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826; (f) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174; (g) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc.
2007, 129, 12404; (h) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904;
(i) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742; (j)
Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882;
(k) Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47, 7075; (l) Nakao, Y.; Kanyiva, K.
S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448; (m) Campeau, L. C.; Parisien, M.;
Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126, 9186; (n) Roy, A. H.; Lenges, C.
P.; Brookhart, M. J. Am. Chem. Soc. 2007, 129, 2082; (o) Ruan, J.; Saidi, O.; Iggo, J.
A.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 10510; (p) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi,
Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115; (q) Lu, J.; Tan, X.; Chen, C. J. Am. Chem.
Soc. 2007, 129, 7768; (r) Brasche, G.; Garca-Fortanet, J.; Buchwald, S. L. Org. Lett.
2008, 10, 2207; (s) Chan, J.; Baucom, K. D.; Murry, J. A. J. Am. Chem. Soc. 2007, 129,
14106; (t) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 10580; (u) Li, L.; Jones,
W. D. J. Am. Chem. Soc. 2007, 129, 10707; (v) Ackermann, L.; Novak, P.; Vicente, R.;
Hofmann, N. Angew. Chem., Int. Ed. 2009, 48, 6045; (w) Xia, J.-B.; You, S.-L.
Organometallics 2007, 26, 4869.
Acknowledgment
One of the authors, K.R. thanks the Council of Scientific and
Industrial Research (CSIR), New Delhi, India for the research
fellowship.
9. For recent reviews, see: (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem.
Res. 2009, 42, 1074; (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2009, 48, 5094; (c) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew.
Chem., Int. Ed. 2009, 48, 9792; (d) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,
110, 1147; (e) Dyker, G. Handbook of C–H Transformations; Wiley-VCH:
Weinheim, 2005.
Supplementary data
Supplementary data associated with this article can be found, in