C O M M U N I C A T I O N S
NADPH depletion assay,11,16 suggesting that the stoichiometric ratio
between NADPH and substrate hydroxylation could not be 1:1.
The presumed decoupling between electron transfer and hydroxy-
lation might account for this difference.
Scheme 2. Two Redox Partner Systems (Electron-Transfer
Pathways) Used in This Study for PikC
a
Finally, when RhFRED was fused to another prototype biosyn-
thetic P450 EryF,13 a more active self-sufficient biocatalyst was
obtained once again (see Supporting Information). Together with
previous in ViVo work,9 our studies demonstrate that further
development of RhFRED as the basis for an efficient cost-effective
redox partner for bacterial biosynthetic P450s is warranted. Further
efforts to understand this unique reductase, especially the electron-
transfer process involving heterologous fusion systems, are now
in progress.
a
A, three component system; B, one component RhFRED system.
Acknowledgment. We thank Dr. Norihiko Misawa for gener-
ously providing the construct pRED containing reductase domain
gene from P450RhF, and Dr. Gary W. Ashley for the gift of
6-deoxyerythronolide. The authors thank Dr. Jeffrey D. Kittendorf
and Liangcai Gu for helpful discussions. We are grateful for support
from NIH RO1 Grant GM078553 (to D.H.S. and L.M.P.).
Supporting Information Available: Plasmid maps for constructs,
SDS-PAGE analysis, UV-visible absorption spectrum for PikC-
RhFRED, gel filtration chromatography results, substrate binding
affinity measurements, steady-state kinetics data, mass spectrometry
data for EryF-RhFRED reaction analysis, and experimental procedures.
This material is available free of charge via the Internet at http://
pubs.acs.org.
Figure 1. HPLC analysis of reactions (1 h) catalyzed by wt PikC and fusion
enzyme PikC-RhFRED. (a) Negative control of 1 in absence of P450. (b)
1
with wt PikC in presence of Fdr, Fdx, and NADPH. (c) 1 with PikC-
RhFRED in presence of only NADPH. (d) Negative control of 4 in absence
of P450. (e) 4 with wt PikC in presence of Fdr, Fdx, and NADPH. (f) 4
with PikC-RhFRED in presence of only NADPH.
References
His
difference spectrum as its N-terminal His
not shown). However, it lacks catalytic activity, which is consistent
with a similar C-terminal His -tagged form of original P450RhF.
6
This provides additional evidence for the importance of the C
terminus of RhFRED for electron transfer.
6
-tagged PikC-RhFRED. This protein showed a similar CO-
(
1) (a) Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism
and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum
Press: New York, 1995; p 473. (b) Guengerich, F. P. Chem. Res. Toxicol.
2001, 14, 611.
6
-tagged counterpart (data
8
(
2) Hannemann, F. B. A.; Ewen, K. M.; Bernhardt, R. Biochim. Biophys.
Acta 2007, 1770, 330.
(
3) (a) Lewis, D. F. V.; Hlavica, P. Biochim. Biophys. Acta 2000, 1460, 353.
(
b) Munro, A. W.; Girvan, H. M.; McLean, K. J. Nat. Prod. Rep. 2007,
As mentioned above, one benefit of the fusion arrangement is
that the covalent linkage presumably stabilizes the interaction
between the P450 and redox partner, thus enhancing electron-
transfer efficiency. As such, one would expect this to improve the
catalytic activity in terms of kcat, whereas the substrate specificity
2
4, 585.
(
4) (a) Ruettinger, R. T.; Fulco, A. J. J. Biol. Chem. 1981, 256, 5728. (b)
Otey, C. R.; Bandara, G.; Lalonde, J.; Takahashi, K.; Arnold, F. H.
Biotechnol. Bioeng. 2005, 93, 494.
(5) Munro, A. W.; Leys, D. G.; McLean, K. J.; Marshall, K. R.; Ost, T. W.
B.; Daff, S.; Miles, C. S.; Chapman, S. K.; Lysek, D. A.; Moser, C. C.;
Page, C. C.; Dutton, P. L. Trends Biochem. Sci. 2002, 27, 250.
(6) (a) Fairhead, M.; Giannini, S.; Gillam, E. M. J.; Gilardi, G. J. Biol. Inorg.
Chem. 2005, 10, 842. (b) Dodhia, V. R.; Fantuzzi, A.; Gilardi, G. J. Biol.
Inorg. Chem. 2006, 11, 903.
15
would not be changed significantly. To test whether this also
applies to PikC-RhFRED, we first determined the substrate binding
affinity of 1 and 4 toward both PikC and PikC-RhFRED. As
(7) (a) De Mot, R.; Parret, A. H. A. Trends Microbiol. 2002, 502. (b) Roberts,
G. A.; Grogan, G.; Greter, A.; Flitsch, S. L.; Turner, N. J. J. Bacteriol.
expected, 1 and 4 bind to PikC-RhFRED with K
0
1
d
values of 92.6 (
.5 µM and 215.0 ( 4.2 µM, respectively, which are similar to
12.9 ( 1.9 µM (1) and 288.3 ( 7.1 (4) toward wt PikC. This
2002, 184, 3898.
(8) (a) Roberts, G. A.; C¸ elik, A.; Hunter, D. J. B.; Ost, T. W. B.; White, J.
H.; Chapman, S. K.; Turner, N. J.; Flitsch, S. L. J. Biol. Chem. 2003,
4
8914. (b) Hunter, D. J. B.; Roberts, G. A.; Ost, T. W. B.; White, J. H.;
indicates that attachment of the heterologous reductase domain has
no significant impact on substrate binding to PikC. Subsequently,
we compared the kinetic parameters of PikC-RhFRED with those
M u¨ ller, S.; Turner, N. J.; Flitsch, S. L.; Chapman, S. K. FEBS Lett. 2005,
579, 2215.
(
9) (a) Kubota, M.; Nodate, M.; Yasumoto-Hirose, M.; Uchiyama, T.; Kagami,
O.; Shizuri, Y.; Misawa, N. Biosci. Biotechnol. Biochem. 2005, 69, 2421.
(
b) Nodate, M.; Kubota, M.; Misawa, N. Appl. Microbiol. Biotechnol.
of the PikC-Fdr-Fdx three component system. As previously
2
006, 71, 455.
reported,1
1,16
substrate inhibition was observed in all cases when
(
10) Xue, Y.; Zhao, L.; Liu, H.-w.; Sherman, D. H. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 12111.
substrate concentration was greater than 250 µM. Moreover, the
solubility limitation (less than 500 µM) of macrolides in aqueous
(
11) (a) Xue, Y.; Wilson, D.; Zhao, L.; Liu, H.-w.; Sherman, D. H. Chem.
Biol. 1998, 5, 661. (b) Lee, S. K.; Park, J. W.; Kim, J. W.; Jung, W. S.;
Park, S. R.; Choi, C. Y.; Kim, E. S.; Ahn, J. S.; Sherman, D. H.; Yoon,
Y. J. J. Nat. Prod. 2006, 69, 847.
solution prevented us from deducing the K
i
value. Therefore, we
determined the apparent specificity constants (kcat/K
m
) by fitting
(
12) Sherman, D. H.; Li, S.; Yermalitskaya, L. V.; Kim, Y.; Smith, J. A.;
Waterman, M. R.; Podust, L. M. J. Biol. Chem. 2006, 281, 26289.
13) (a) Lambalot, R. H.; Cane, D. E. Biochemistry 1995, 34, 1858. (b)
Andersen, J. F.; Hutchinson, R. C. J. Bacteriol. 1992, 174, 725. (c) Ogura,
H.; Nishida, C. R.; Hoch, U. R.; Perera, R.; Dawson, J. H.; Ortiz de
Montellano, P. R. Biochemistry 2004, 43, 14712.
the low-concentration data to the linear region of the Michaelis-
Menten curve. By directly monitoring the substrate consumption
(
m
by HPLC, the kcat/K values of PikC-RhFRED were determined to
-1
-1
be 0.96 and 1.20 µM ‚min for 1 and 4, respectively. In contrast,
(14) Neeli, R.; Girvan, H. M.; Lawrence, A.; Warren, M. J.; Leys, D.; Scrutton,
the specificity constants of wt PikC partnered by Fdr and Fdx were
N. S.; Munro, A. W. FEBS Lett. 2005, 579, 5582.
-
1
-1
-1
-1
(15) (a) Munro, A. W.; Girvan, H. M.; McLean, K. J. Biochim. Biophys. Acta.
0
.24 µM ‚min for 1 and 0.31 µM ‚min for 4. It is evident
2007, 1770, 345. (b) Yabusaki, Y. Biochimie 1995, 77, 594.
that the fusion enhanced catalytic activity approximately 4-fold for
both 1 and 4. Notably, the kinetic parameters of wt PikC differ
significantly from those previously determined indirectly, using a
(16) Graziani, E. I.; Cane, D. E.; Betlach, M. C.; Kealey, J. T.; McDaniel, R.
Bioorg. Med. Chem. Lett. 1998, 3117.
JA075842D
J. AM. CHEM. SOC.
9
VOL. 129, NO. 43, 2007 12941