Communication
doi.org/10.1002/ejic.202000734
EurJIC
European Journal of Inorganic Chemistry
ergy E to be determined from the slope (see Supporting Infor- metallocene catalysts with the co-catalyst MAO results in active
a
[
44]
mation for details).
ethylene polymerisation catalysts that show good incorporation
of 1-hexene. Analyses of the polyethylene homopolymers by
rheological measurements have established the presence of
long chain branches, presumably formed via macromer inser-
crystallographic data for this paper. These data are provided free of
charge by the joint Cambridge Crystallographic Data Centre and
Fachinformationszentrum Karlsruhe Access Structures service
www.ccdc.cam.ac.uk/structures.
Conflict of Interest
There are no conflicts to declare.
Acknowledgments
We are grateful to INEOS Technologies for funding.
Figure 6. Rheological determination of storage (G′) and loss modulus (G′′), as
well as complex viscosity η* vs. oscillating frequency ω from 160–200 °C for
PE samples from run 3 in Table 1.
Keywords: Ethylene · Polymerisation · Titanium · Pincer ·
Branching
Flow activation energies of up to 28 kJ mol–1 are typically
reported for linear high density polyethylene, while higher val-
ues indicate the presence of long chain branches by virtue of
[1] M. C. Baier, M. A. Zuideveld, S. Mecking, Angew. Chem. Int. Ed. 2014, 53,
9
722–9744; Angew. Chem. 2014, 126, 9878.
[2] Q. Yang, M. D. Jensen, M. P. McDaniel, Macromolecules 2010, 43, 8836–
852.
[
44]
entanglement effects. Benchmarking studies using a bis(2,6-
diisopropylphenylimine)pyridine iron catalyst that produces
8
[
3] M. K. Reinking, G. Orf, D. McFaddin, J. Polym. Sci., Part A 1998, 36, 2889–
[
45]
highly linear polyethylene,
and a bis(diisopropylphenyl)-
2898.
diimine nickel catalyst that produces highly branched polyeth-
[4] P. H. M. Budzelaar, WIREs Comput. Mol. Sci. 2012, 2, 221–241.
[5] J. G. Donkervoort, J. T. B. H. Jastrzebski, B.-J. Deelman, H. Kooijman, N.
Veldman, A. L. Spek, G. van Koten, Organometallics 1997, 16, 4174–4184.
[
46]
ylene (including LCB),
resulted in E values of 29 and 65 kJ/
a
mol, respectively. The E values of ≈ 40–60 kJ/mol for the poly-
a
[
6] A. V. Chuchuryukin, R. Huang, E. E. van Faassen, G. P. van Klink, M. Lutz,
J. C. Chadwick, A. L. Spek, G. van Koten, Dalton Trans. 2011, 40, 8887–
8895.
mers obtained with 1-Ti(NMe ) and 1-Zr(NMe ) indicate the
2
2
2 2
formation of long chain branches in these materials. The excel-
[
7] T. R. Boussie, G. M. Diamond, C. Goh, K. A. Hall, A. M. LaPointe, M. K.
Leclerc, C. Lund, V. Murphy, J. A. Shoemaker, U. Tracht, H. Turner, J.
Zhang, T. Uno, R. K. Rosen, J. C. Stevens, J. Am. Chem. Soc. 2003, 125,
lent 1-hexene incorporation with 1-Ti(NMe ) would favour LCB
2
2
[
2]
formation via the insertion of macromers mechanism. For
-Ti(NMe ) , LCB formation appears to be largely independent
1
2
2
4
306–4317.
of the polymerisation temperature or the addition of hydrogen.
[8] T. R. Boussie, G. M. Diamond, C. Goh, K. A. Hall, A. M. LaPointe, M. K.
Leclerc, V. Murphy, J. A. Shoemaker, H. Turner, R. K. Rosen, J. C. Stevens,
F. Alfano, V. Busico, R. Cipullo, G. Talarico, Angew. Chem. Int. Ed. 2006, 45,
For both systems, 1-Ti(NMe ) and 1-Zr(NMe ) , at higher tem-
2
2
2 2
perature the polymer molecular weight decreases, probably
due to much faster rates of termination vs. propagation. Inter-
3
278–3283; Angew. Chem. 2006, 118, 3356.
[
9] R. D. Froese, P. D. Hustad, R. L. Kuhlman, T. T. Wenzel, J. Am. Chem. Soc.
2007, 129, 7831–7840.
estingly, in the case of 1-Zr(NMe ) , this results in a decrease
2
2
in the activation energy E . This could be as a result of a de-
[10] L. Luconi, A. Rossin, A. Motta, G. Tuci, G. Giambastiani, Chem. Eur. J. 2013,
9, 4906–4921.
a
1
crease in long chain branch formation, although, the lower
molecular weight polymer obtained at higher temperatures
would increase the macromer concentration, which should lead
to increased LCB levels. However, the precise mechanism for
LCB formation in these systems is as yet unknown. An alterna-
tive explanation could be the presence of a very low molecular
weight fraction (below the entanglement molecular weight
[
11] L. Luconi, A. Rossin, G. Tuci, I. Tritto, L. Boggioni, J. J. Klosin, C. N. Theri-
ault, G. Giambastiani, Chem. Eur. J. 2012, 18, 671–687.
12] C. Zuccaccia, V. Busico, R. Cipullo, G. Talarico, R. D. J. Froese, P. C.
Vosejpka, P. D. Hustad, A. Macchioni, Organometallics 2009, 28, 5445–
5458.
[
[
13] S. C. Kui, N. Zhu, M. C. Chan, Angew. Chem. Int. Ed. 2003, 42, 1628–1632;
Angew. Chem. 2003, 115, 1666.
[
14] M. C. Chan, S. C. Kui, J. M. Cole, G. J. McIntyre, S. Matsui, N. Zhu, K. H.
Tam, Chem. Eur. J. 2006, 12, 2607–2619.
Te = 1160 Da) which affects the rheology measurements and
decreases the flow activation energy. Further studies are under-
way to control and understand branch formation in this new
class of non-metallocene polymerisation catalysts.
[15] L. C. So, C. C. Liu, M. C. Chan, J. C. Lo, K. H. Sze, N. Zhu, Chem. Eur. J.
012, 18, 565–573.
16] K.-H. Tam, J. C. Y. Lo, Z. Guo, M. C. Chan, J. Organomet. Chem. 2007, 692,
750–4759.
2
[
[
4
17] A. V. Chuchuryukin, R. Huang, M. Lutz, J. C. Chadwick, A. L. Spek, G.
van Koten, Organometallics 2011, 30, 2819–2830.
Conclusions
[18] S. Kuppuswamy, I. Ghiviriga, K. A. Abboud, A. S. Veige, Organometallics
010, 29, 6711–6722.
2
Group 4 complexes containing biaryl-type ligands 1 and 2 have
[
19] S. R. Golisz, J. A. Labinger, J. E. Bercaw, Organometallics 2010, 29, 5026–
been synthesised and characterised. Activation of these non-
5032.
Eur. J. Inorg. Chem. 0000, 0–0
www.eurjic.org
4
© 2020 The Authors. European Journal of Inorganic Chemistry
published by Wiley-VCH GmbH