7532
J . Org. Chem. 1997, 62, 7532-7533
Communications
Stu d ies tow a r d th e Asym m etr ic Syn th esis
of r-Am in o P h osp h on ic Acid s via th e
Ad d ition of P h osp h ites to En a n tiop u r e
Su lfin im in es
Sch em e 1
Isabelle M. Lefebvre and Slayton A. Evans, J r.*
The William Rand Kenan, J r. Laboratories of Chemistry,
The University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina, 27599-3290
noaluminum reagents,10 Grignard reagents,11 and sulfur
ylides12). Among the most recent and stereochemically
illustrative examples, lithium ester enolates were added
to sulfinimines to form â-amino esters in high diastereo-
selectivities and excellent yields.13 In addition, the
reactions of R-metallo phosphonates with sulfinimines
have exhibited high diastereoselectivities as well.14
Received J uly 29, 1997
R-Amino phosphonic acids 1 serve as important sur-
rogates for R-amino carboxylic acids and therefore exhibit
a range of intriguing biological attributes.1 They usually
act as antagonists in the metabolism of amino acids.
Furthermore, R-amino phosphonic acids are potential
antibacterial agents,2 exhibit neuroactive characteristics,3
and have been employed as anticancer drugs4 and
pesticides.5 Generally, the biological activities of R-amino
phosphonic acids strongly depend on the stereogenicity
at the carbon center R to the phosphorus atom. One such
example is the high antibacterial activity of alafosfalin,
[N-(L-alanyl)-L-1-aminoethyl]phosphonic acid [(S,R) di-
astereomer], as compared to that of the other diastere-
oisomers [i.e., (R,R), (S,S), and (R,S)].2 Also, the (R)-
enantiomer of the phosphonic acid analog of leucine (i.e.,
(R)-LeuP) is a more potent inhibitor of leucine aminopep-
tidase than the (S)-isomer.6 As a consequence, consider-
able research has been devoted to the asymmetric
synthesis of R-amino phosphonic acids during the past
decades.7
These intriguing findings prompted us to study the
asymmetric synthesis of R-amino phosphonic acids via
the addition of metallo phosphites 4 to enantiopure
sulfinimines 3. The use of chiral sulfinimines as accep-
tors presented several unique advantages: (a) com-
mercial availability of the chiral auxiliary, (b) diverse
electronic and steric properties of the chiral sulfinyl
auxiliary which may encourage metal binding and unique
organizational requirements for substrate/reagent ap-
proach (i.e., stereodirecting functional group), and (c) the
possibility for recycling the auxiliary.13a
Our synthetic strategy illustrating an enantioselective
approach to R-amino phosphonic acids involved the
addition of metallo phosphites to enantiomerically ho-
mogeneous and configurationally restricted sulfinimines.
Enantiopure sulfinimines have found wide utility as
precursors in the asymmetric synthesis of amines8 and,
particularly, R-amino acids by utilizing the stereodirect-
ing capability of the chiral sulfinyl moiety. They were
used as activated imine acceptors in the “conjugate
addition” of various nucleophiles (e.g., hydrides,9 orga-
Chiral sulfinimines 3 were synthesized according to the
procedure reported by Davis et al. (Scheme 1).8
The additions of lithium and sodium dialkyl phosphites
4 to sulfinimines 3 were performed at -78 °C in tetrahy-
drofuran (THF) solvent. After quenching with a satu-
rated solution of ammonium chloride and extraction with
ether, N-sulfinyl-R-amino phosphonates15 5 were ob-
tained in excellent diastereoselectivity in all cases (Scheme
2 and Table 1).
Isolation of the major isomer 5a followed by transfor-
mation to the target R-amino phosphonate 6a allowed
for the assignment of the (S)-configuration to the new
stereogenic carbon center. Removal of the N-sulfinyl
auxiliary of diastereomer 5a was achieved by acid-
promoted methanolysis according to the procedure re-
(1) Kafarski, P.; Lejczak, B. Phosphorus Sulfur Silicon Relat. Elem.
1991, 63, 193.
(2) (a) Allen, J . G.; Atherton, F. R.; Hall, M. J .; Hassal, C. H.;
Holmes, S. W.; Lambert, R. W.; Nisbet, L. J .; Ringrose, P. S. Nature
1978, 272, 56. (b) Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J .
Med. Chem. 1986, 29, 29.
(3) Collins, J . F.; Dixon, A. J .; Badman, G.; de Sarro, G.; Chapman,
A. G.; Hart, G. P.; Meldrum, B. S. Neurosci. Lett. 1984, 51, 371.
(4) (a) Klenner, T.; Valenzuele-Paz, P.; Keppler, B. K.; Angres, G.;
Scherf, H. R.; Winger, F.; Schmal, D. Cancer Treat. Rev. 1990, 17, 253.
(b) Klenner, T.; Winger, F.; Keppler, B. K.; Krempien, B.; Schmal, D.
J . Cancer Res. Clin. Oncol. 1990, 116, 341.
(5) Evans, R. H.; Watkins, J . C. Life Sci. 1981, 28, 1303.
(6) Giannousis, P. P.; Bartlett, P. A. J . Med. Chem. 1987, 30, 1603.
(7) (a) For a recent review, see: Kukhar, V. P.; Soloshonok, V. A.;
Solodenko, V. A. Phosphorus Sulfur Silicon Relat. Elem., 1994, 92, 239.
(b) Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M. J . Org. Chem. 1995,
60, 6656. (c) Smith, A. B., III; Yager, K. M.; Taylor, C. M. J . Am. Chem.
Soc. 1995, 117, 10879.
(10) (a) Davis, F. A.; Portonovo, P. S.; Reddy, R. E.; Chiu, Y.-H. J .
Org. Chem. 1996, 61, 440. (b) Davis, F. A.; Reddy, R. E.; Portonovo, P.
S. Tetrahedron Lett. 1994, 35, 9351.
(11) (a) Hua, D. H.; Miao, S. W.; Chen, J . S.; Iguchi, S. J . Org. Chem.
1991, 56, 4. (b) Yang, T. K.; Chen, R.-Y.; Lee, D.-S.; Peng, W.-S.; J iang,
Y.-Z.; Mi, A.-Q.; J ong, T. T. J . Org. Chem. 1994, 59, 914.
(12) (a) Davis, F. A.; Zhou, P.; Liang, C.-H.; Reddy, R. E. Tetrahe-
dron: Asymmetry 1995, 6, 1511. (b) Garcia Ruano, J . L.; Fernandez,
I.; Hamdouchi, C. Tetrahedron Lett. 1995, 36, 295.
(13) (a) Davis, F. A.; Reddy, R. E.; Szewczyk, J . M. J . Org. Chem.
1995, 60, 7037. (b) Davis, F. A.; Szewczyk, J . M.; Reddy, R. E. J . Org.
Chem. 1996, 61, 2222 and references therein.
(8) Davis, F. A.; Reddy, R. E.; Szewczyk, J . M.; Reddy, G. V.;
Portonovo, P. S.; Zhang, H.; Fanelli, D.; Reddy, R. T.; Zhou, P.; Carroll,
P. J . J . Org. Chem. 1997, 62, 2555 and references therein.
(9) (a) Hua, D. H.; Lagneau, N.; Wang, H.; Chen, J . Tetrahedron:
Asymmetry 1995, 6, 349. (b) Hose, D. R. J .; Mahon, M. F.; Molloy, K.
C.; Raynhan, T.; Wills, M. J . Chem. Soc., Perkin Trans. 1 1996, 691.
(14) Mikolajcyk, M.; Lyzwa, P.; Drabowicz, J .; Wieczorek, M. W.;
Blaszcyk, J . Chem. Commun. 1996, 1503.
(15) The structures of products 5a -c have been assigned by 1H, 13C,
and 31P NMR spectroscopic techniques. The diastereoselectivities were
determined by 31P NMR. All products 5a -c gave satisfactory elemental
analysis.
S0022-3263(97)01394-7 CCC: $14.00 © 1997 American Chemical Society