10.1002/anie.201706522
Angewandte Chemie International Edition
COMMUNICATION
As demonstrated, the above chemistry afforded an array of
discrete oligomers, which are perfect samples for accurately exploring
structure-property relationship. Especially, the study of the physical
properties of discrete oligomers with similar chemical structure but
different MWs or topologies is a fundamental topic in polymer science
area. As demonstrated here, the variation of glass transition temperature
(Tg) with inverse MW of these discrete oligomers, including linear and
topological ones, was analyzed based on Flory-Fox equation[21] as in
Figure 5. For both uniform linear oligomers and dendrons, the Tg
gradually increases with increasing the MW (Figure 5a and 5b).
Importantly, the correlation between the MW and Tg matched with
Flory-Fox equation, and the Tg was close to the predicted Tg∞ when MW
reached up to 10,000 Da (Figure 5c). In addition, the linear oligomers
and dendrons ones show almost the same linear correlation plot,
denoting that both Tg∞ and empirical parameter K of Flory-Fox equation
are almost the same values in linear and topological ones with the same
chemical structure, although the concentration of end groups in each
molecules is different in oligomers and dendrons, respectively.
Furthermore, the DSC results indicate that oligomers with polydisperse
MWs obtained from step-growth polymerization via thiol-maleimide
coupling exhibit much broader glass transition[8f] and lower Tg, as
compared with the discrete oligomers having similar MWs (Figure S9).
These differences might probably be attributed to the existence of low-
MW fractions in the polydisperse samples, according to Flory-Fox
equation.[21] Deep insights and comprehensive understanding requires
detail study, providing us further motivations for developing effective
chemistry towards discrete oligomers.
Acknowledgements
This work was supported by the National Science Foundation of China
(21674072 & 21234005), the Priority Academic Program Development
of Jiangsu Higher Education Institutions (PAPD) and the Program of
Innovative Research Team of Soochow University. The authors also
thank Prof. J. L in I. C. S and Prof. Z. J. H in Soochow U. for their helpful
discussions.
Keywords : thiol-maleimide Michael type addition • discrete
oligomer • iterative growth • dendrimer • sequence defined
[1] J. F. Lutz, J. M. Lehn, E. W. Meijer, K. Matyjaszewski, Nature Reviews Materials
2016, 1, 16024.
[2] G. M. Church, Y. Gao, S. Kosuri, Science 2012, 337, 1628.
[3] K. A. Dill, J. L. MacCallum, Science 2012, 338, 1042-1046.
[4] K. Müllen, Nature Reviews Materials 2016, 1. DOI: 10.1038/natrevmats.2015.13
[5] B. van Genabeek, B. F. de Waal, B. Ligt, A. R. Palmans, E. Meijer, ACS Macro. Lett.
2017, 6, 674-678.
[6] a) J. Lawrence, S. H. Lee, A. Abdilla, M. D. Nothling, J. M. Ren, A. S. Knight, C.
Fleischmann, Y. Li, A. S. Abrams, B. V. Schmidt, M. C. Hawker, L. A. Connal, A. J.
McGrath, P. G. Clark, W. R. Gutekunst, C. J. Hawker, J. Am. Chem. Soc. 2016, 138,
6306-6310; b) J. Xu, C. Fu, S. Shanmugam, C. J. Hawker, G. Moad, C. Boyer, Angew.
Chem. Int. Ed. 2017; DOI: 10.1002/anie.201610223; c) B. Oschmann, J. Lawrence, M.
W. Schulze, J. M. Ren, A. Anastasaki, Y. Luo, M. D. Nothling, C. W. Pester, K. T.
Delaney, L. A. Connal, A. J. McGrath, P. G. Clark, C. M. Bates, C. J. Hawker, ACS
Macro. Lett. 2017, 668-673; d) S. C. Solleder, R. V. Schneider, K. S. Wetzel, A. C.
Boukis, M. A. R. Meier, Macromol. Rapid Commun. 2017, 38.
DOI:
10.1002/marc.201600711
[7] a) R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149-2154; b) B. Merrifield,
Bioscience reports 1985, 5, 353-376; c) C. M. Gothard, N. A. Rao, J. S. Nowick, J. Am.
Chem. Soc. 2007, 129, 7272-7273; d) G. Cavallo, A. Al Ouahabi, L. Oswald, L. Charles,
J. F. Lutz, J. Am. Chem. Soc. 2016, 138, 9417-9420; e) S. Pfeifer, Z. Zarafshani, N. Badi,
J. F. Lutz, J. Am. Chem. Soc. 2009, 131, 9195-9197; f) V. Duvigneaud, C. Ressler, J. M.
Swan, C. W. Roberts, P. G. Katsoyannis, S. Gordon, J. Am. Chem. Soc. 1953, 75, 4879-
4880; g) S. Muthana, H. Yu, H. Cao, J. Cheng, X. Chen, J. Org. Chem. 2009, 74, 2928-
2936; h) G. Lu, S. Lam, K. Burgess, Chem. Commun. 2006, 1652-1654; i) N. G. Angelo,
P. S. Arora, J. Am. Chem. Soc. 2005, 127, 17134-17135; j) N. Zydziak, W. Konrad, F.
Feist, S. Afonin, S. Weidner, C. Barner-Kowollik, Nat. Commun. 2016, 7, 13672.
[8] a) O. I. Paynter, D. J. Simmonds, M. C. Whiting, J. Chem. Soc. 1982, 1165-1166; b)
J. S. Schumm, D. L. Pearson, J. M. Tour, Angew. Chem. Int. Ed. 1994, 33, 1360-1363;
c) C. J. Hawker, E. E. Malmstrom, C. W. Frank, J. P. Kampf, J. Am. Chem. Soc. 1997,
119, 9903-9904; d) S. Binauld, C. J. Hawker, E. Fleury, E. Drockenmuller, Angew. Chem.
Int. Ed. 2009, 48, 6654-6658; e) J. P. Sadighi, R. A. Singer, S. L. Buchwald, J. Am.
Chem. Soc. 1998, 120, 4960-4976; f) K. Takizawa, C. Tang, C. J. Hawker, J. Am. Chem.
Soc. 2008, 130, 1718-1726; g) Q. L. Wang, Y. Qu, H. K. Tian, Y. H. Geng, F. S. Wang,
Macromolecules 2011, 44, 1256-1260; h) S. Binauld, D. Damiron, L. A. Connal, C. J.
Hawker, E. Drockenmuller, Macromol. Rapid Commun. 2011, 32, 147-168; i) F. A.
Leibfarth, J. A. Johnson, T. F. Jamison, Proc. Natl. Acad. Sci. 2015, 112, 10617-10622;
j) Y. Jiang, M. R. Golder, H. V. Nguyen, Y. Wang, M. Zhong, J. C. Barnes, D. J. Ehrlich,
J. A. Johnson, J. Am. Chem. Soc. 2016, 138, 9369-9372; k) J. C. Barnes, D. J. Ehrlich,
A. X. Gao, F. A. Leibfarth, Y. Jiang, E. Zhou, T. F. Jamison, J. A. Johnson, Nat. Chem.
2015, 7, 810-815; l) F. Amir, Z. Jia, M. J. Monteiro, J. Am. Chem. Soc. 2016, 138, 16600-
16603.
[9] a) D. L. Pearson, J. S. Schumm, J. M. Tour, Macromolecules 1994, 27, 2348-2350;
b) S. Sakurai, H. Goto, E. Yashima, Org. Lett. 2001, 3, 2379-2382; c) E. Igner, O. I.
Paynter, D. J. Simmonds, M. C. Whiting, J. Chem. Soc., Perkin Trans. 1 1987, 2447-
2454; d) S. S. Reddy, X. Dong, R. Murgasova, A. I. Gusev, D. M. Hercules,
Macromolecules 1999, 32, 1367-1374; e) K. L. Wooley, C. J. Hawker, J. M. J. Frechet,
Angew. Chem. Int. Ed. 1994, 33, 82-85.
[10] X. Jiang, J. J. Lu, F. Zhou, Z. B. Zhang, X. Q. Pan, W. Zhang, Y. Wang, N. C. Zhou,
X. L. Zhu, Polym. Chem. 2016, 7, 2645-2651.
[11] K. Takizawa, H. Nulwala, J. Hu, K. Yoshinaga, C. J. Hawker, J. Polym. Sci. Pol.
Chem. 2008, 46, 5977-5990.
Figure 5. (a) The glass transition temperature of discrete oligomers and (b)
dendrons. (c) Flory–Fox analysis of Tg vs. MW-1 for uniform linear oligomers
and dendrons.
[12] a) C. E. Hoyle, A. B. Lowe, C. N. Bowman, Chem. Soc. Rev. 2010, 39, 1355-1387;
b) A. B. Lowe, M. Liu, J. A. van Hensbergen, R. P. Burford, Macromol. Rapid Commun.
2014, 35, 391-404; c) Y. W. Li, H. Su, X. Y. Feng, Z. Wang, K. Guo, C. Wesdemiotis,
Q. Fu, S. Z. D. Cheng, W. B. Zhang, Polym. Chem. 2014, 5, 6151-6162; d) P. Espeel, L.
L. Carrette, K. Bury, S. Capenberghs, J. C. Martins, F. E. Du Prez, A. Madder, Angew.
Chem. Int. Ed. 2013, 52, 13261-13264.
[13] a) Z. Liu, C. Dong, X. Wang, H. Wang, W. Li, J. Tan, J. Chang, ACS appl materials
& interfaces 2014, 6, 2393-2400; b) G. Mantovani, F. Lecolley, L. Tao, D. M. Haddleton,
J. Clerx, J. J. Cornelissen, K. Velonia, J. Am. Chem. Soc. 2005, 127, 2966-2973; c) E.
B. Murphy, F. Wudl, Prog. Polym. Sci. 2010, 35, 223-251.
[14] a) G. Battistini, P. G. Cozzi, J. P. Jalkanen, M. Montalti, L. Prodi, N. Zaccheroni, F.
Zerbetto, ACS Nano 2008, 2, 77-84; b) K. Hu, Y. J. Qi, J. Zhao, H. F. Jiang, X. Chen, J.
Ren, Eur. J. Med. Chem. 2013, 64, 529-539.
[15] R. Kota, R. Samudrala, D. L. Mattern, J. Org. Chem. 2012, 77, 9641-9651.
[16] B. Verbraeken, R. Hoogenboom, Angew. Chem. Int. Ed. 2017, 56, 7034-7036.
In summary, a versatile, efficient and metal-free chemistry, i.e.,
combining orthogonal deprotections of maleimide and thiol groups
together with thiol-maleimide Michael coupling, was developed for
precisely fabricating discrete oligomers. This efficient coupling
chemistry allows the generation of an unprecedentedly broad library of
discrete oligomers with a range of linear, cyclic, and dendron
architectures. We anticipated that these precisely-defined oligomers
would enable accurate investigation on the structure-property
relationships and advance potential applications of exquisite polymer-
based functional materials.
This article is protected by copyright. All rights reserved.