D. A. Plattner and D. Feichtinger
FULL PAPER
exceeded 5% of the primary fragment intensities. In the case of acetonitrile
or pyridine N-oxide, there was an additional reaction channel, and this
yielded an asymmetrical [(salen)Mn O Mn(salen)L]2 fragment by dis-
sociation of one of the terminal ligands. Those species could also be
obtained in high enough intensities to conduct CID experiments by
applying higher tube lens potentials (ꢀ90 V). The CID experiment on
[(salen)Mn O Mn(salen)NCCH3]2 turned out to be inconclusive, since
the only fragment mass which can be unambiguously assigned to a specific
[21] C. T. Dalton, K. M. Ryan, V. M. Wall, C. Bousquet, D. G. Gilheany,
Top. Catal. 1998, 5, 75 ± 91.
[22] J. T. Groves, W. J. Kruper, J. Am. Chem. Soc. 1979, 101, 7613 ± 7615.
[23] M. Yamashita, J. B. Fenn, J. Phys. Chem. 1984, 88, 4451 ± 4459.
[24] The basic electrospray source for mass spectrometry is described by:
C. M. Whitehouse, R. N. Dreyer, M. Yamashita, J. B. Fenn, Anal.
Chem. 1985, 57, 675 ± 679.
[25] A complete monograph on the technique is: Electrospray Ionization
Mass Spectrometry (Ed.: R. D. Cole), Wiley, New York, 1997.
[26] a) R. Colton, J. C. Traeger, Inorg. Chim. Acta 1992, 201, 153 ± 155;
b) R. Colton, A. DꢁAgostino, J. C. Traeger, Mass Spectrom. Rev. 1995,
14, 79 ± 106, and references cited therein.
[27] a) V. Katta, S. K. Chowdhury, B. T. Chait, J. Am. Chem. Soc. 1990, 112,
5348 ± 5349; b) S. R. Wilson, Y. H. Wu, Organometallics 1993, 12,
1478 ± 1480; c) A. O. Aliprantis, J. W. Canary, J. Am. Chem. Soc. 1994,
116, 6985 ± 6986; d) L. A. P. Kane-Maguire, R. Kanitz, M. M. Sheil, J.
Organomet. Chem. 1995, 486, 243 ± 248; e) C. Q. Jiao, B. S. Freiser,
S. R. Carr, C. J. Cassidy, J. Am. Chem. Soc. Mass Spectrom. 1995, 6,
521 ± 524; f) K. S. Wang, X. L. Han, R. W. Gross, G. W. Gokel, J. Am.
Chem. Soc. 1995, 117, 7680 ± 7686; g) L. Ripa, A. Hallberg, J. Org.
Chem. 1996, 61, 7147 ± 7155; h) Z. M. Dzhabieva, V. P. Kozlovskii,
Yu. M. Shulꢁga, A. F. Dodonov, G. P. Belov, Russ. Chem. Bull. 1996,
45, 474 ± 476; i) J. M. Brown, K. K. Hii, Angew. Chem. 1996, 108, 679 ±
682; Angew. Chem. Int. Ed. Engl. 1996, 35, 657 ± 659; j) K. K. Hii,
T. D. W. Claridge, J. M. Brown, Angew. Chem. 1997, 109, 1033 ± 1036;
Angew. Chem. Int. Ed. Engl. 1997, 36, 984 ± 987; k) B. H. Lipshutz,
K. L. Stevens, B. Lames, J. G. Pavlovich, J. P. Snyder, J. Am. Chem.
Soc. 1996, 118, 6796 ± 6797; l) R. Saf, R. Schitter, C. Mirtl, F. Stelzer, K.
Hummel, Macromolecules 1996, 29, 7651 ± 7656; m) K. A. Hirsch,
S. R. Wilson, J. S. Moore, J. Am. Chem. Soc. 1997, 119, 10401 ± 10412;
n) M. S. Stephan, A. J. J. M. Teunissen, G. K. M. Verzijl, J. G. de Vries,
Angew. Chem. 1998, 110, 688 ± 690; Angew. Chem. Int. Ed. 1998, 37,
662 ± 664.
reaction channel corresponded to [Mn(salen)(NCCH3)] , which was only a
minor peak in the spectrum.
Computational methods: Quantum chemical calculations for the com-
pounds shown in Figure 4 have been performed using the Gaussian94 series
of programs[46] on DECAlpha 8400 computers at ETH Zürich. The quintet
and triplet ground states of the manganese(iii) and manganese(v) com-
plexes, respectively, were fully optimized without symmetry constraints
using the hybrid Becke3Lee ± Yang ± Parr (B3LYP) exchange correlation
functional.[47] A 6 ± 311G* valence triple zeta polarization basis set was
used. The structure and energy of [O Mn(salen)] have been reported in a
previous account.[31]
Acknowledgements
The authors thank Prof. Peter Chen for financial support and his
continuous interest in our work and Martin Jufer for his assistance in
some of the experiments. We would also like to thank the Competence
Center for Computational Chemistry at ETH Zürich for generous
allocation of computing resources.
[1] W. J. Mijs, C. R. H. I. De Jonge, Organic Syntheses by Oxidation with
Metal Compounds, Plenum, New York, 1986.
[2] C. C. Reddy, G. A. Hamilton, K. M. Madyashta, Biological Oxidation
Systems, Academic Press, San Diego, 1990.
[3] R. Sato, T. Omura, Cytochrome P-450, Kodansha, Tokyo, 1978.
[4] R. E. White, M. J. Coon, Annu. Rev. Biochem. 1980, 49, 315 ± 356.
[5] T. G. Traylor, P. S. Traylor in Active Oxygen in Biochemistry (Eds.: J. S.
Valentine, C. S. Foote, J. F. Liebman, A. Greenberg), Blackie Aca-
demic, London, 1995, pp. 84 ± 187.
[28] a) C. Hinderling, D. A. Plattner, P. Chen, Angew. Chem. 1997, 109,
272 ± 274; Angew. Chem. Int. Ed. Engl. 1997, 36, 243 ± 244; b) C.
Hinderling, D. Feichtinger, D. A. Plattner, P. Chen, J. Am. Chem. Soc.
1997, 119, 10793 ± 10804.
[29] D. Feichtinger, D. A. Plattner, P. Chen, J. Am. Chem. Soc. 1998, 120,
7125 ± 7126.
[30] D. Feichtinger, D. A. Plattner, Angew. Chem. 1997, 109, 1796 ± 1798;
Angew. Chem. Int. Ed. Engl. 1997, 36, 1718 ± 1719.
[31] D. A. Plattner, D. Feichtinger, J. El-Bahroui, O. Wiest, Int. J. Mass
Spectrom. 2000, 195/196, 351 ± 362.
[6] Cytochrome P-450, Structure, Mechanism and Biochemistry (Ed.: P. R.
Ortiz de Montellano), Plenum, New York, 1995.
[32] D. Feichtinger, D. A. Plattner, J. Chem. Soc. Perkin Trans. 2 2000,
1023 ± 1028.
[33] The use of p-cyanodimethylaniline N-oxide as an oxidant for
manganese(iii) porphyrin complexes has been pioneered by Bruice
et al. M. F. Powell, E. F. Pai, T. C. Bruice, J. Am. Chem. Soc. 1984, 106,
3277 ± 3285.
[34] a) K. M. Ervin, P. B. Armentrout, J. Chem. Phys. 1985, 83, 166 ± 189;
b) S. K. Loh, D. A. Hales, L. Lian, P. B. Armentrout, J. Chem. Phys.
1989, 90, 5466 ± 5485; c) R. H. Schultz, P. B. Armentrout, Int. J. Mass
Spectrom. Ion Processes 1991, 107, 29 ± 48; d) R. H. Schultz, K. C.
Crellin, P. B. Armentrout, J. Am. Chem. Soc. 1991, 113, 8590 ± 8601;
e) N. F. Dalleska, K. Honma, L. S. Sunderlin, P. B. Armentrout, J. Am.
Chem. Soc. 1994, 116, 3519 ± 3528; f) M. T. Rodgers, K. M. Ervin, P. B.
Armentrout, J. Chem. Phys. 1997, 106, 4499 ± 4508.
[7] T. Mann in Oxidases and Related Systems (Eds.: T. E. King, H. S.
Mason, M. Morrison), Liss, New York, 1988, pp. 29 ± 49.
[8] Y.-C. Fann, N. C. Gerber, P. A. Osmulski, L. P. Hager, S. G. Sligar,
B. M. Hoffmann, J. Am. Chem. Soc. 1994, 116, 5989 ± 5990.
[9] a) K. McMillan, D. S. Bredt, D. J. Hirsch, S. H. Snyder, J. E. Clark,
B. S. S. Masters, Proc. Natl. Acad. Sci. USA 1992, 89, 1141 ± 1145;
b) K. A. White, M. A. Marletta, Biochemistry 1992, 31, 6627 ± 6631;
c) M. A. Marletta, J. Biol. Chem. 1993, 268, 12231 ± 12234.
[10] J. T. Groves, W. J. Kruper, T. E. Nemo, R. S. Myers, J. Mol. Catal. 1980,
7, 169 ± 177.
[11] Metalloporphyrins in Catalytic Oxidations (Ed.: R. A. Sheldon),
Dekker, New York, 1994.
[12] Metalloporphyrin Catalyzed Oxidations (Eds.: F. Montanari, L. Case-
lla), Kluwer, Dordrecht, 1994.
[35] A similar method that translates kinetic branching ratios into
thermochemical data in cases when the difference in entropy change
between two different fragmentation pathways can be neglected was
introduced by Cooks. The assumptions inherent in the ªCooksꢁ kinetic
methodº were essentially the same as those required for linear free
energy relationships, that is, Hammett s1 correlations. The kinetic
method has been widely used for the determination of proton
affinities and gas-phase basicities of many organic compounds, and
this has yielded values in excellent agreement with independent
methods. a) R. G. Cooks, J. S. Patrick, T. Kotiaho, S. A. McLuckey,
Mass Spectrom. Rev. 1994, 13, 287 ± 339; b) R. G. Cooks, P. S. H.
Wong, Acc. Chem. Res. 1998, 31, 379 ± 386, and references cited
therein.
[13] T. L. Siddall, N. Miyaura, J. C. Huffman, J. K. Kochi, J. Chem. Soc.
Chem. Commun. 1983, 1185 ± 1186.
[14] E. G. Samsel, K. Srinivasan, J. K. Kochi, J. Am. Chem. Soc. 1985, 107,
7606 ± 7617.
[15] K. Srinivasan, J. K. Kochi, Inorg. Chem. 1985, 24, 4671 ± 4679.
[16] K. Srinivasan, P. Michaud, J. K. Kochi, J. Am. Chem. Soc. 1986, 108,
2309 ± 2320.
[17] K. Srinivasan, S. Perrier, J. K. Kochi, J. Mol. Catal. 1986, 36, 297 ± 317.
[18] W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem.
Soc. 1990, 112, 2801 ± 2803.
[19] R. Irie, K. Noda, Y. Ito, N. Matsumoto, T. Katsuki, Tetrahedron Lett.
1990, 31, 7345 ± 7348.
[20] E. N. Jacobsen in Comprehensive Organometallic Chemistry II, Vol. 12
(Eds.: G. W. Wilkinson, F. G. A. Stone, E. W. Abel, L. S. Hegedus),
Pergamon, New York, 1995, Chapter 11.1.
[36] a) W. M. Coleman, R. R. Goehring, L. T. Taylor, J. G. Mason, R. K.
Boggess, J. Am. Chem. Soc. 1979, 101, 2311 ± 2315; b) W. M. Coleman,
598
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
0947-6539/01/0703-0598 $ 17.50+.50/0
Chem. Eur. J. 2001, 7, No. 3