N.D. Ca’ et al. / Journal of Catalysis 282 (2011) 120–127
127
(2002) 2513;
Acknowledgments
(c) P.J. Jessop, B. Subramaniam, Chem. Rev. 107 (2007) 2666. and references
therein.
[11] (a) T. Clifford, Fundamental of Supercritical Fluids, Oxford University Press,
Oxford, New York, 1999;
Financial support from The Ministero dell’Università e della
Ricerca Scientifica e Tecnologica (Progetto d’Interesse Nazionale
PRIN 2008A7P7YJ-005) is acknowledged. The facilities of Centro
Interfacoltà di Misure (Università di Parma) were used for record-
ing NMR spectra. Thankfulness is expressed to Marco Dardari for
his technical assistance in the autoclave handling with carbon
dioxide and carbon momoxide.
(b) M. Poliakoff, N.J. Meehan, S.K. Ross, Chem. Ind. (1999) 750;
(c) P.G. Jessop, W. Leitner, in: P.G. Jessop, W. Leitner (Eds.), Chemical
Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim, Germany, 1999;
(d) J.M. De Simone, W. Tumas, in: J.M. De Simone, W. Tumas (Eds.), Green
Chemistry Using Liquid and Supercritical Carbon Dioxide, Oxford University
Press, Oxford, New York, 2003;
(e) E.J. Beckman, J. Supercrit. Fluids 28 (2004) 121;
(f) A. Beiker, Chem. Rev. 99 (1999) 453. and references therein;
(g) P.G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 118 (1996) 344.
[12] J.O. Pande, J. Tonheim, Proc. Safety Progr. 20 (2001) 37.
[13] (a) B.M. Bhanage, S. Fujita, Y. Ikushima, M. Arai, Green Chem. 5 (2003) 340;
(b) A. Iou, V. Parvulescu, P. Jacobs, D. De Vos, Green Chem. 9 (2007) 158;
(c) T. Jiang, X. Ma, Y. Zhou, S. Liang, J. Zhang, B. Han, Green Chem. 10 (2008)
465.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
[14] C.-C. Tai, M.J. Huck, E.P. McKoon, T. Woo, P.G. Jessop, J. Org. Chem. 67 (2002)
9070.
[15] F. Shi, Y. Deng, T. SiMa, J. Peng, Y. Gu, B. Qiao, Angew. Chem., Int. Edit. 42
(2003) 3257.
[16] M.J. Fuchter, C.J. Smith, M.W.S. Tsang, A. Boyer, S. Saubern, J.H. Ryan, A.B.
Holmes, Chem. Commun. (2008) 2152.
[17] M. Aresta, in: M. Aresta (Ed.), Carbon Dioxide as Chemical Feedstock, Wiley-
VCH, Weinheim, 2010.
[18] The explosion range for CO in air is 17–70% CO at 18–20 °C and atmospheric
pressure, 14.8–71.5% CO at 100 °C and atmospheric pressure; at higher total
pressure, the range of flammability decreases: for example, at 20 atm and
20 °C the range is ca. 20–60% CO). See C.M. Bartish, G.M. Drissel, in: M.
Grayson, D. Eckroth, G.J. Bushey, L. Campbell, A. Klingsberg, L. van Nes (Eds.),
Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd ed., vol. 4, Wiley-
Interscience, New York, 1978, p. 774.
References
[1] (a) A.F. Hegarty, L.J. Drennan, in: A.R. Katritzky, O. Meth-Cohn, C.W. Rees
(Eds.), Comprehensive Organic Functional Group Transformations, Pergamon
Press, Oxford, 1995, p. 499;
(b) T.P. Vishnyakova, I.A. Golubeva, E.V. Glebova, Russ. Chem. Rev. (Engl.
Transl.) 54 (1985) 249.
[2] (a) F. Bigi, R. Maggi, G. Sartori, Green Chem. 2 (2000) 140;
(b) F. Shi, Y. Deng, T. SiMa, J. Peng, B. Qiao, Angew. Chem., Int. Edit. 42 (2003)
3257;
(c) J. Fournier, C. Bruneau, P.H. Dixneuf, S. Lecolier, J. Org. Chem. 56 (1991)
4456.
[3] B.M. Trost, Angew. Chem., Int. Edit. 34 (1995) 259.
[4] (a) For a general review on oxidative carbonylation of amines to ureas see: D.J.
Diaz, A.K. Darko, L. McElwee-White, Eur. J. Org. Chem. (2007) 4453. and
references therein;
[19] (a) A. Maryott, R. Smith, National Bureau of Standards, Circular 514 (1951)
(Issued August 10);
(b) A.J. Gordon, R.A. Ford,
A Handbook of Pratical Data, Technique and
(b) M.R. Didgikar, D. Roy, S.P. Gupte, S.S. Ioshi, R.V. Chaudhari, Ind. Eng. Chem.
Res. 49 (2010) 1027;
(c) K. Orito, M. Miyazawa, T. Nakamura, A. Horibata, H. Ushito, H. Nagasaki, M.
Yuguchi, S. Yamashita, T. Yamazaki, M. Tokuda, J. Org. Chem. 71 (2006) 5951;
(d) B. Gabriele, G. Salerno, M. Costa, Topics Organomet. Chem. 18 (2006) 239;
(e) F. Shi, Y. Deng, J. Catal. 211 (2002) 548.
References, Wiley, New York, 1972. p. 12.
[20] A.E. Martell, R.M. Smith, Critically Selected Stability Constants of Metal
Complexes, NIST Standard Reference Data, Gaitherburg, MD 20899 USA, 2003.
[21] (a) A.W. Francis, J. Phys. Chem. 58 (1954) 1099;
(b) D.K. Dange, J.P. Heller, K.V. Wilson, Ind. Eng. Chem. Prod. Res. Dev. 24
(1985) 162.
[22] J. Kumelan, A.P-S. Kamps, D. Tuma, G. Maurer, J. Chem. Thermodyn. 38 (2000)
1396.
[23] (a) M. Aresta, E. Quaranta, Tetrahedron 48 (1992) 1515;
(b) S. Inoue, N. Yamazaki, Organic and Bio-organic Chemistry of Carbon
Dioxide, Kodansha, Tokyo, 1981. p. 82;
(c) R. Nomura, Y. Hasegawa, M. Ishimoto, T. Toyosaki, H. Matsuda, J. Org.
Chem. 57 (1992) 7339.
[24] D. Chouchi, D. Gourgouillon, M. Courel, J. Vital, M.N. Da Ponte, Ind. Eng. Chem.
Res. 40 (2001) 2551.
[25] D.D. Perrin, B. Dempsey, E.P. Serjeant, Pka prediction for organic acids and
bases, Chapman and Hall, London, New York, 1981.
[5] (a) B. Gabriele, R. Mancuso, G. Salerno, M. Costa, Chem. Commun. (2003) 486;
(b) B. Gabriele, G. Salerno, R. Mancuso, M. Costa, J. Org. Chem. 69 (2004) 4741.
[6] B. Gabriele, M. Costa, G. Salerno, G.P. Chiusoli, J. Chem. Soc., Chem. Commun.
(1992) 1007.
[7] G. Goldoni, L. Marcheselli, G. Pistoni, L. Tassi, S. Fanali, J. Chem. Soc., Faraday
Trans. 88 (1992) 2003.
[8] For general solvent effects on nucleophilicity, see J. March, Advanced Organic
Chemistry, 4th ed., Wiley-Interscience, New York, 1992. p. 357.
[9] I. Pri-Bar, H. Alper, Can. J. Chem. 68 (1990) 1544.
[10] (a) G. Musie, M. Wei, B. Subramaniam, D.H. Busch, Coordin. Chem. Rev. 219
(2001) 789. and references therein;
(b) M. Wei, G.T. Musie, D.H. Bush, D. Subramaniam, J. Am. Chem. Soc. 124