Nature Chemistry
Articles
volume of 40μl. The total ion chromatograms were analysed by displaying EICs of
m/z [M+H]+ values of the possible linear peptides with an additional C-terminal
cysteine amide residue compared to the AgrD sequence.
20. Paharik, A. E. et al. Coagulase-negative staphylococcal strain prevents
Staphylococcus aureus colonization and skin infection by blocking quorum
sensing. Cell Host Microbe 22, 746–756 (2017).
21. Gordon, C. P., Olson, S. D., Lister, J. L., Kavanaugh, J. S. & Horswill, A. R.
Truncated autoinducing peptides as antagonists of Staphylococcus lugdunensis
quorum sensing. J. Med. Chem. 59, 8879–8888 (2016).
Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.
22. Otto, M., Süßmuth, R., Jung, G. & Götz, F. Structure of the pheromone
peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424,
89–94 (1998).
Data availability
Primary sequencing data are deposited at the National Centre for Biotechnology
Information (NCBI GenBank). All other data generated and analysed during this
study are available in the article and its Supplementary Information. Further details
are available from the corresponding author on request.
23. Jarraud, S. et al. Exfoliatin-producing strains defne a fourth agr specifcity
group in Staphylococcus aureus. J. Bacteriol. 182, 6517–6522 (2000).
24. Kalkum, M., Lyon, G. J. & Chait, B. T. Detection of secreted peptides by
using hypothesis-driven multistage mass spectrometry. Proc. Natl Acad. Sci.
USA 100, 2795–2800 (2003).
Received: 23 September 2018; Accepted: 14 March 2019;
Published: xx xx xxxx
25. Olson, M. E. et al. Staphylococcus epidermidis agr quorum-sensing system:
signal identifcation, cross talk, and importance in colonization. J. Bacteriol.
196, 3482–3493 (2014).
26. Todd, D. A. et al. Signal Biosynthesis Inhibition with Ambuic Acid as a
Strategy To Target Antibiotic-Resistant Infections. Antimicrob. Agents
Chemother. 61, e00263-17 (2017).
References
1. Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal
virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA
92, 12055–12059 (1995).
27. Tsuda, S., Yoshiya, T., Mochizuki, M. & Nishiuchi, Y. Synthesis of cysteine-
rich peptides by native chemical ligation without use of exogenous thiols.
Org. Lett. 17, 1806–1809 (2015).
2. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev.
Genet. 42, 541–564 (2008).
28. Wang, B., Zhao, A., Novick, R. P. & Muir, T. W. Key driving forces in the
biosynthesis of autoinducing peptides required for staphylococcal virulence.
Proc. Natl Acad. Sci. USA 112, 10679–10684 (2015).
3. Toendel, M., Kavanaugh, J. S., Flack, C. E. & Horswill, A. R. Peptide
signaling in the staphylococci. Chem. Rev. 111, 117–151 (2011).
4. Wang, B. & Muir, T. W. Regulation of virulence in Staphylococcus aureus:
molecular mechanisms and remaining puzzles. Cell Chem. Biol. 23,
214–224 (2016).
29. Rink, H. Solid-phase synthesis of protected peptide fragments using
a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett. 28,
3787–3790 (1987).
5. Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing
peptide variants. Science 276, 2027–2030 (1997).
6. Otto, M., Süßmuth, R., Vuong, C., Jung, G. & Götz, F. Inhibition of
virulence factor expression in Staphylococcus aureus by the Staphylococcus
epidermidis agr pheromone and derivatives. FEBS Lett. 450,
257–262 (1999).
30. Dufour, P. et al. High genetic variability of the agr locus in Staphylococcus
species. J. Bacteriol. 184, 1180–1186 (2002).
31. Pyörälä, S. & Taponen, S. Coagulase-negative staphylococci—emerging
mastitis pathogens. Vet. Microbiol. 134, 3–8 (2009).
32. Devriese, L. A., Hájek, V., Oeding, P., Meyer, S. A. & Schleifer, K. H.
Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus
hyicus subsp. chromogenes subsp. nov. Int. J. Syst. Evol. Microbiol. 28,
482–490 (1978).
7. Mayville, P. et al. Structure-activity analysis of synthetic autoinducing
thiolactone peptides from Staphylococcus aureus responsible for virulence.
Proc. Natl Acad. Sci. USA 96, 1218–1223 (1999).
8. McDowell, P. et al. Structure, activity and evolution of the group I thiolactone
peptide quorum-sensing system of Staphylococcus aureus. Mol. Microbiol. 41,
503–512 (2001).
9. Lyon, G. J., Mayville, P., Muir, T. W. & Novick, R. P. Rational design of a
global inhibitor of the virulence response in Staphylococcus aureus, based in
part on localization of the site of inhibition to the receptor-histidine kinase
AgrC. Proc. Natl Acad. Sci. USA 97, 13330–13335 (2000).
10. Lyon, G. J., Wright, J. S., Muir, T. W. & Novick, R. P. Key determinants of
receptor activation in the agr autoinducing peptides of Staphylococcus aureus.
Biochemistry 41, 10095–10104 (2002).
11. George, E. A., Novick, R. P. & Muir, T. W. Cyclic peptide inhibitors of
staphylococcal virulence prepared by Fmoc-based thiolactone peptide
synthesis. J. Am. Chem. Soc. 130, 4914–4924 (2008).
12. Tal-Gan, Y., Stacy, D. M., Foegen, M. K., Koenig, D. W. & Blackwell, H. E.
Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed
through a systematic synthetic study of the group-III autoinducing peptide.
J. Am. Chem. Soc. 135, 7869–7882 (2013).
13. Tal-Gan, Y., Stacy, D. M. & Blackwell, H. E. N-Methyl and peptoid scans of
an autoinducing peptide reveal new structural features required for inhibition
and activation of AgrC quorum sensing receptors in Staphylococcus aureus.
Chem. Commun. 50, 3000–3003 (2014).
14. Johnson, J. G., Wang, B., Debelouchina, G. T., Novick, R. P. & Muir, T. W.
Increasing AIP macrocycle size reveals key features of agr activation in
Staphylococcus aureus. ChemBioChem 16, 1093–1100 (2015).
15. Tal-Gan, Y., Ivancic, M., Cornilescu, G., Yang, T. & Blackwell, H. E. Highly
stable, amide-bridged autoinducing peptide analogues that strongly inhibit
the AgrC quorum sensing receptor in Staphylococcus aureus. Angew. Chem.
Int. Ed. 55, 8913–8917 (2016).
16. Hansen, A. M. et al. Lactam hybrid analogues of solonamide B and
autoinducing peptides as potent S. aureus AgrC antagonists. Eur. J. Med.
Chem. 152, 370–376 (2018).
33. Tong, S. Y. et al. Novel staphylococcal species that form part of a
Staphylococcus aureus-related complex: the non-pigmented Staphylococcus
argenteus sp. nov. and the non-human primate-associated Staphylococcus
schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 65, 15–22 (2015).
34. Novick, R. P., Ross, H. F., Figueiredo, A. M. S., Abramochkin, G. & Muir, T.
W. Activation and inhibition of the staphylococcal AGR system. Science 287,
391 (2000).
35. Kamath, U., Singer, C. & Isenberg, H. D. Clinical signifcance of
Staphylococcus warneri bacteremia. J. Clin. Microbiol. 30, 261–264 (1992).
36. Webster, J. A. et al. Identifcation of the Staphylococcus sciuri species
group with EcoRI fragments containing rRNA sequences and description
of Staphylococcus vitulus sp. nov. Int. J. Syst. Evol. Microbiol. 44,
454–460 (1994).
37. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria
protect against Staphylococcus aureus and are defcient in atopic dermatitis.
Sci. Transl. Med. 9, eaah4680 (2017).
38. Barros, E. M., Ceotto, H., Bastos, M. C. F., dos Santos, K. R. N. &
Giambiagi-deMarval, M. Staphylococcus haemolyticus as an important hospital
pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol. 50,
166–168 (2012).
39. Robinson, D. A., Monk, A. B., Cooper, J. E., Feil, E. J. & Enright, M. C.
Evolutionary genetics of the accessory gene regulator (agr) locus in
Staphylococcus aureus. J. Bacteriol. 187, 8312–8321 (2005).
40. Toendel, M. & Horswill, A. R. Biosynthesis of peptide signals in
Gram-positive bacteria. Adv. Appl. Microbiol. 71, 91–112 (2010).
41. Autret, N., Raynaud, C., Dubail, I., Berche, P. & Charbit, A. Identifcation
of the agr locus of Listeria monocytogenes: role in bacterial virulence.
Infect. Immun. 71, 4463–4471 (2003).
42. Riedel, C. U. et al. AgrD‐dependent quorum sensing afects bioflm
formation, invasion, virulence and global gene expression profles in
Listeria monocytogenes. Mol. Microbiol. 71, 1177–1189 (2009).
43. Vivant, A.-L., Garmyn, D., Gal, L. & Piveteau, P. Te Agr communication
system provides a beneft to the populations of Listeria monocytogenes in soil.
Front. Cell. Infect. Microbiol. 4, 160 (2014).
17. Yang, T., Tal-Gan, Y., Paharik, A. E., Horswill, A. R. & Blackwell, H. E.
Structure–function analyses of a Staphylococcus epidermidis autoinducing
peptide reveals motifs critical for AgrC-type receptor modulation.
ACS Chem. Biol. 11, 1982–1991 (2016).
18. Canovas, J. et al. Cross-talk between Staphylococcus aureus and other
staphylococcal species via the agr quorum sensing system. Front. Microbiol. 7,
1733 (2016).
19. Gless, B. H. et al. Structure–activity relationship study based on
autoinducing peptide (AIP) from dog pathogen S. schleiferi. Org. Lett. 19,
5276–5279 (2017).
44. Zetzmann, M., Sánchez-Kopper, A., Waidmann, M. S., Blombach, B. &
Riedel, C. U. Identifcation of the agr peptide of Listeria monocytogenes.
Front. Microbiol. 7, 989 (2016).
45. Piewngam, P. et al. Pathogen elimination by probiotic Bacillus via signalling
interference. Nature 562, 532–537 (2018).
46. Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers
4, 18033 (2018).