SHAILY ET AL.
9
5
|
CONCLUSION
[
[
18] A. Thakur, D. Mandal, S. Ghosh, Anal. Chem. 2013, 85, 1665.
19] D. Yanga, X. Liua, Y. Zhoua, L. Luoa, J. Zhanga, A. Huanga, Q. Maoa, X.
Chenb, L. Tang, Anal. Methods 2017, 9, 1976.
In conclusion, we have successfully developed a coumarin–triazole
2
+
[20] C.‐T. Chen, W.‐P. Huang, J. Am. Chem. Soc. 2002, 124, 6246.
[21] S. Goswami, R. Chakrabarty, Eur. J. Org. Chem. 2010, 3791.
[22] N. Vasimalai, S. A. John, Spectrochim. Acta, Part A 2011, 82, 153.
scaffold as the fluorescent sensor L5 for Pb detection when com-
+
+
+
2+
pared with other competitive metal ions, e.g. K , Na , Ag , Ca
,
2+
2+
3+
2+
3+
2+
2+
2+
2+
2+
2+
2+
Ba , Cr , Mn , Fe , Ni , Co , Zn , Cu , Pb , Cd , Hg , Sn
3
+
+
[23] N. Nuñez‐Dallos, C. Cuadrado, J. Hurtado, E. Nagles, O. García‐
Beltran, Int. J. Electrochem. Sci. 2016, 11, 9855.
Al and Hg . The chemosensor works as both as a colorimetric and
2+
‘
turn‐off’ fluorescence probe for Pb
. Significant fluorescence
[
24] G. Pagona, S. P. Economopoulos, G. K. Tsikalas, H. E. Katerinopoulos,
quenching was observed with chemosensor L5 in the presence of
N. Tagmatarchis, Chem. – Eur. J. 2010, 16, 11969.
2
+
Pb ions, while the presence of other metal ions caused no change
[
25] E. Roussakis, S. A. Pergantis, H. E. Katerinopoulos, Chem. Commun.
2008, 6221.
in fluorescence intensity. This sensor has the capability to detect
2
+
Pb in the nano‐molar range with detection limits of 1.9 nM. Changes
[26] G. Wu, M. Li, J. Zhu, k. W. Chiu Lai, Q. Tong, F. Lu, RSC Adv. 2016, 6,
00696.
1
in the chemosensor can be seen by the naked eye and can be used as
2
+
[27] A. P. W. Arachchilage, F. Wang, V. Feyer, O. Plekan, R. G. Acres, K. C.
an optical sensor for Pb determination with significant color changes
Prince, J. Phys. Chem. A 2016, 120, 7080.
on TLC plates. This easy, economical, and reliable method has advan-
[
28] R. Nazir, A. J. Stasyuk, D. T. Gryko, J. Org. Chem. 2016, 81, 11104.
2+
tages over other reported methods for the detection of Pb ions.
[
29] M. Tasior, D. Kim, S. Singha, M. Krzeszewski, K. H. Ahn, D. T. Gryko,
J. Mater. Chem. C 2015, 3, 1421.
ACKNOWLEDGMENTS
[
30] Shaily, A. Kumar, N. Ahmed, Supramol. Chem. 2017, 29, 146.
We thank the Ministry of Human Resource and Development (MHRD),
New Delhi, India (grant number MHR01‐23‐200‐428) for financial
support.
[31] Shaily, A. Kumar, S. Kumar, N. Ahmed, RSC Adv. 2016, 6, 108105.
[32] Shaily, A. Kumar, N. Ahmed, Ind. Eng. Chem. Res. 2017, 56, 6358.
[33] Shaily, A. Kumar, N. Ahmed, New J. Chem. 2017, 41, 14746.
[
34] C. P. Rao, G. Srimannarayana, Synth. Commun. 1990, 20, 535.
ORCID
[35] K. C. Majumdar, S. K. Samanta, Tetrahedron Lett. 2002, 43, 2119.
[
[
[
[
36] T. Saito, T. Ohkubo, H. Kuboki, M. Maeda, K. Tsuda, T. K. S.
Satsumabayashi, J. Chem. Soc., Perkin Trans. 1998, 1, 3065.
37] F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B.
Sharpless, V. V. Fokin, J. Am. Chem. Soc. 2005, 127, 210.
REFERENCES
38] A. Senthilvelan, I. T. Ho, K. C. Chang, G. H. Lee, Y. H. Liu, W. S. Chung,
[
[
[
[
1] A. R. Flegal, D. R. Smith, Environ. Res. 1992, 58, 125.
2] H. N. Kim, W. X. Ren, J. S. Kim, J. Yoon, Chem. Soc. Rev. 2012, 41, 3210.
3] H. Needleman, Annu. Rev. Med. 2004, 55, 209.
Chem. – Eur. J. 2009, 15, 6152.
39] S. Bano, A. Mohd, A. A. P. Khan, K. S. Siddiqi, J. Chem. Eng. Data 2010,
55, 5759.
4] Department of Health and Human Services and Prevention, Center for
[40] M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, Anal. Chem. 1996,
68, 1414.
Disease Control, Morb. Mort. Wkly Rep. 2003, 52, 1.
[
[
5] K. Steenland, P. Boffetta, Am. J. Ind. Med. 2000, 38, 295.
[41] W. Lin, L. Yuan, Z. Cao, Y. Feng, L. Long, Chem. – Eur. J. 2009,
1
5, 5096.
6] S. Araki, H. Sato, K. Yokoyama, K. Murata, Am. J. Ind. Med. 2000,
37, 193.
[42] D. S. McClure, J. Chem. Phys. 1952, 20, 682.
[
[
[
7] C. Winder, N. G. Carmichael, P. D. Lewis, Trends Neurosci. 1982, 5, 207.
[43] A. W. Varnes, R. B. Dodson, E. L. Wehry, J. Am. Chem. Soc. 1972,
9
4, 946.
8] D. A. Cory‐Slechta, Adv. Behav. Pharmacol. 1984, 4, 211.
[
44] D. Karak, A. Banerjee, S. Lohar, A. Sahana, a. S. K. Mukhopadhyay, S. S.
9] C. M. Bouton, L. P. Frelin, C. E. Forde, H. A. Godwin, J. Pevsner,
Adhikari, D. Das, Anal. Methods 2013, 5, 169.
J. Neurochem. 2001, 76, 1724.
[
45] D. Feng, W. Zhu, G. Liu, W. Wang, RSC Adv. 2016, 6, 96729.
[
10] The European Parliament and the Council of the European Union,
Directive on the Restriction of the Use of Certain Hazardous Sub-
stances in Electrical and Electronic Equipment 2002/95/EC.
[46] A. Ghorai, J. Mondal, R. Saha, S. K. Bhattacharya, G. K. Patra, Anal.
Methods 2016, 8, 2032.
[
[
[
11] World Health Organization, Guidelines for Drinking‐Water Quality, 4th
ed., WHO Press, Geneva, Switzerland 2011.
12] Y.‐Y. Chen, H.‐T. Chang, Y.‐C. Shiang, Y.‐L. Hung, C.‐K. Chiang, C.‐C.
Huang, Anal. Chem. 2009, 81, 9433.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supporting information tab for this article.
[14] B. J. Feldman, J. D. Osterloh, B. H. Hata, A. D’Alessandro, Anal. Chem.
1
994, 66, 1983.
How to cite this article: Shaily, Kumar A, Parveen I, Ahmed N.
Highly selective and sensitive coumarin–triazole‐based fluo-
[
15] R. J. Bowins, R. H. McNutt, J. Anal. At. Spectrom. 1994, 9, 1233.
[
16] M. R. Cave, O. Butler, R. N. Chenery, J. M. Cook, M. S. Cresser, D. L.
2+
Miles, J. Anal. At. Spectrom. 2001, 16, 194.
[
17] F. Zapata, A. Caballero, A. Espinosa, A. Tárraga, P. Molina, J. Org. Chem.
2009, 74, 4787.