Please do not adjust margins
RSC Advances
Page 6 of 7
DOI: 10.1039/C6RA14821B
ARTICLE
Journal Name
1490-1501. (c) K. H. Kim, A. Husakou and J. Herrmann, Optics
Express, 2010, 18, 7488-7496. (d) T. Atay, J. H. Song and A. V.
Nurmikko, Nano Lett., 2004, 4, 1627-1631.
7 (a) L. Q. Liu, S. X. Ouyang and J. H. Ye, Angewandte Chemie-
International Edition, 2013, 52, 6689-6693. (b) B. H. Wu, D. Y. Liu, S.
Mubeen, T. T. Chuong, M. Moskovits and G. D. Stucky, J. Am. Chem.
Soc., 2016, 138, 1114-1117.
8 M. Lazzeri, A. Vittadini and A. Selloni, Physical Review B, 2002, 65.
9 U. Diebold, Surf. Sci. Rep., 2003, 48, 53-229.
10 X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie and L. S. Zheng, J. Am.
Chem. Soc., 2009, 131, 3152-+.
11 J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi, F.
Y. C. Boey, L. A. Archer and X. W. Lou, J. Am. Chem. Soc., 2010, 132,
6124-6130.
Fig 10 EIS Nyquist plots of Au-TiO2 composites in dark, under visible
12 M. Diak, E. Grabowska and A. Zaleska, Appl. Surf. Sci., 2015, 347,
275-285.
irradiation and under UV-visible irradiation.
indicates that a more effective separation of photogenerated
electron–hole pairs and a faster interfacial charge transfer occurred.
The depressed arc radius measured under UV-visible irradiation
than visible irradiation also agrees with the efficiency of
photocatalytic reduction of CO2 under different irradiation.
13 C. Hu, X. Zhang, X. S. Li, Y. Yan, G. C. Xi, H. F. Yang and H. Bai,
Chemistry-a European Journal, 2014, 20, 13557-13560.
14 C. Wang, C. Kan, J. Zhu, X. Zeng, X. Wang, H. Li and D. Shi, Journal
of Nanomaterials, 2010, 2010, 1-9.
15 S. W. Liu, J. G. Yu and M. Jaroniec, J. Am. Chem. Soc., 2010, 132
,
11914-11916.
16 H. Choi, P. K. Santra and P. V. Kamat, ACS Nano, 2012, 6, 5718-
5726.
Conclusions
17 M. Liu, L. Y. Piao, L. Zhao, S. T. Ju, Z. J. Yan, T. He, C. L. Zhou and
W. J. Wang, Chem. Commun. , 2010, 46, 1664-1666.
18 W. B. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol and S.
B. Cronin, Acs Catalysis, 2011, 1, 929-936.
The Au-TiO2 nanocomposite consisting of (001) exposed TiO2
nanosheet-anchored Au nanoplate was successfully fabricated by
using bifunctional linker molecules. The nanocomposites exhibit
promising activity for photoreduction of CO2 to renewable fuels in
the presence of water under visible light and even near-infrared
light. The enhancement of large photocatalytic activity was induced
by both transversal and longitudinal plasma of Au nanoplates. The
diverse sorts of photoredution product including CH4, CO, CH3OH,
and CH3CH2OH were detected, which is closely related to not only
different light irradiation, but also the reaction media.
19 T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K.
Easawi, S. Negm and H. Talaat, European Physical Journal-Special
Topics, 2008, 153, 361-364.
20 E. T. Castellana, R. C. Gamez, M. E. Gomez and D. H. Russell,
Langmuir, 2010, 26, 6066-6070.
21 W. Ni, X. Kou, Z. Yang and J. F. Wang, ACS Nano, 2008, 2, 677-
686.
22 A. J. Morris, G. J. Meyer and E. Fujita, Acc. Chem. Res., 2009, 42,
1983-1994.
Acknowledgements
This work was supported by 973 Programs (No. 2014CB239302 and
2013CB632404), National Natural Science Foundation of China (No.
21473091, 51272101, and 51202005).
23 L. J. Liu, C. Y. Zhao, D. Pitts, H. L. Zhao and Y. Li, Catalysis Science
& Technology, 2014, 4, 1539-1546.
24 L. J. Liu, C. Y. Zhao and Y. Li, J. Phys. Chem. C, 2012, 116, 7904-
7912.
25 C. C. Chuang, W. C. Wu, M. C. Huang, I. C. Huang and J. L. Lin, J.
Catal., 1999, 185, 423-434.
Notes and references
1 (a).A. Dhakshinamoorthy, S. Navalon, A. Corma and H. Garcia,
Energy & Environmental Science, 2012, 5, 9217-9233. (b) W. G. Tu,
Y.Zhou and Z. G. Zou, Adv. Mater., 2014, 26, 4607-4626. (c) G. A.
Ozin, Adv. Mater., 2015, 27, 1957-1963.
26 L. J. Liu, H. L. Zhao, J. M. Andino and Y. Li, Acs Catalysis, 2012, 2,
1817-1828.
27 H. Liu, S. A. Cheng, M. Wu, H. J. Wu, J. Q. Zhang, W. H. Li and C. N.
Cao, J. Phys. Chem. A, 2000, 104, 7016-7020.
2 S. Linic, P. Christopher and D. B. Ingram, Nat. Mater., 2011, 10,
28 W. H. Leng, Z. Zhang, J. Q. Zhang and C. N. Cao, J. Phys. Chem. B
2005, 109, 15008-15023.
,
911-921.
3 W. B. Hou and S. B. Cronin, Adv. Funct. Mater., 2013, 23, 1612-
29 Y. J. Wang, R. Shi, J. Lin and Y. F. Zhu, Applied Catalysis B-
Environmental, 2010, 100, 179-183.
1619.
4
Y. Tian and T. Tatsuma, Chem. Commun., 2004, DOI:
30 Y. J. Wang, X. J. Bai, C. S. Pan, J. He and Y. F. Zhu, J. Mater. Chem.
,
10.1039/b405061d, 1810-1811.
2012, 22, 11568-11573.
5 Y. Tian and T. Tatsuma, J. Am. Chem. Soc., 2005, 127, 7632-7637.
6 (a) J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz, J.
Chem. Phys., 2002, 116, 6755-6759. (b) K. Kolwas, A. Derkachova
and M. Shopa, J. Quant. Spectrosc. Radiat. Transfer, 2009, 110,
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins