Please donot adjust the margins
[24], which might facilitate the formation of C2+ products. The high selectivity of ethylene may benefit from the in-
situ formation of biphasic Cu2O-Cu induced by Cl [36] during the reaction. Recent studies have shown that the
interface between Cu1+ and Cu0 contributes to the dimerization of CO adsorbed on the electrode surface to
generate ethylene [37]. In addition, Yang et al. [38] emphasized the role of the structural transformation of Cu
nanoparticles into cube particles during the reaction to increase the selectivity of the C2&C2+ product. The cubic
mesocrystals were formed during the present in-situ reduction process, which may also contribute to the improved
ethylene selectivity [25, 26].
Fig.4d showed that the current density increased from 3.35 mA/cm2 to 40.51 mA/cm2 with a negative shift in the
applied potential. As shown in Fig. 4e, CB-Cu produced a maximum ethylene current density of 14.8 mA/cm2 at
−1.06 V and showed fairly good stability in the 6-h test (Fig. 4f).
Table S1 (Supporting information) compares ethylene production performance of CB-Cu catalyst with other
copper-based catalysts in the literature. As for the partial current density of ethylene, CB-Cu was comparable or
better than the reported catalysts. We tentatively attribute this enhancement to the increased surface roughness
of our chloride-derived copper compared to the oxide-derived copper reported previously.
In summary, we studied the catalytic activity of a CuCl-based electrode for electrochemical reduction of carbon
dioxide and found that CuCl was gradually transformed into a cubic structure of biphasic Cu2O-Cu presumably due
to the depletion and induction of chlorine ions in the reduction process. Enhanced faradaic efficiency and partial
current density for the formation of ethylene were observed for this new catalyst with a good stability. The synergy
of Cu1+ and cubic structure may account for this improvement. The utilization of cuprous chloride as a catalyst
precursor in replace of cuprous oxide provides a new strategy to improve the selectivity of C2&C2+ products.
Acknowledgments
This work was financially supported by Shell-CAS Frontier Sciences Program (No. PT48809) from Shell and start-up funding from
ShanghaiTech University.
Appendix A. Supplementary data
References
[1] M. Liu, T. Qin, Q. Zhang, et al., Sci. China: Chem. 58 (2015) 1524-1531.
[2] S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
[3] M. S. Dresselhaus, I. L. Thomas, Nature 414 (2001) 332-337.
[4] A. Chen, B.L. Lin, Joule 2 (2018) 594-606.
[5] X.F.Bai, W.Chen, B.Y.Wang, et al., Acta Phys. Chim. Sin. 33 (2017) 2388-2403.
[6] Y. Chen, C. W. Li , M. W. Kanan, J. Am. Chem. Soc. 134 (2012) 19969-19972.
[7] M. Ma, B. J. Trzesniewski, J. Xie, et al., Angew. Chem. Int. Ed. 55 (2016) 9748-9752.
[8] H. Mistry, Y. W. Choi, A. Bagger, et al., Angew. Chem. Int. Ed. 56 (2017) 11394-11398.
[9] S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 136 (2014) 1734-1737.
[10] C. H. Lee, M. W. Kanan, ACS Catal. 5 (2015) 465-469.
[11] S. Gao, Y. Lin, X. Jiao, et al., Nature 529 (2016) 68-71.
[12] D. Gao, H. Zhou, J. Wang, et al., J. Am. Chem. Soc. 137 (2015) 4288-4291.
[13] W. Zhu, Y.-J. Zhang, H. Zhang, et al., J. Am. Chem. Soc. 136 (2014) 16132-16135.
[14] M. Liu, Y. Pang, B. Zhang, et al., Nature 537 (2016) 382-386.
[15] Q. Lu, J. Rosen, Y. Zhou, et al., Nat. Commun. 5 (2014) 3242-3247.
[16] D. D. Zhu, J. L. Liu, S. Z. Qiao, Adv. Mater. 28 (2016) 3423-3452.
[17] K. P. Kuhl, E. R. Cave, D. N. Abram, et al., Energy Environ. Sci. 5 (2012) 7050-7059.
[18] Y. Hori, I. Takahashi, O. Koga, et al., J. Phys. Chem. B 106 (2002) 15-17.
[19] W. Tang, A. A. Peterson, A. S. Varela, et al., Phys. Chem. Chem. Phys. 14 (2012) 76-81.
[20] A. Loiudice, P. Lobaccaro, E. A. Kamali, et al., Angew. Chem. Int. Ed. 128 (2016) 5789-5792.
[21] S. Lee, J. Lee, Chemsuschem. 9 (2016) 333-344.
[22] D. Kim, S. Lee, J. D. Ocon, et al., Phys. Chem. Chem. Phys. 17 (2015) 824-830.
[23] H. Mistry, A. S. Varela, C. S. Bonifacio, et al., Nat Commun. 7 (2016) 12123-12130.
[24] S. Lee, D. Kim, J. Lee, Angew. Chem. Int. Ed. 54 (2015) 14701-14705.
[25] C. S. Chen, A. D. Handoko, J. H. Wan, et al., Catal. Sci. Technol. 5 (2015) 161-168.
[26] F. S. Roberts, K. P. Kuhl, A. Nilsson, Angew. Chem. Int. Ed. 127 (2015) 5268-5271.
[27] K. J. Schouten, Z. Qin, E. Perez Gallent, et al., J. Am. Chem. Soc. 134 (2012) 9864-9867.
[28] A. Dutta, M. Rahaman, M. Mohos, et al., ACS Catal. 7 (2017) 5431-5437.
[29] N. S. Mcintyre, M. G. Cook, Anal. Chem. 47 (1975) 2208-2213.
[30] P. D. Luna, R. Quinterobermudez, C. T. Dinh, et al., Nature Catalysis 1 (2018) 103-110.
[31] A. Dutta, M. Rahaman, N. C. Luedi, et al., ACS Catal. 6 (2016) 3804-3814.
[32] D. Gao, I. Zegkinoglou, N. J. Divins, et al., ACS Nano. 11 (2017) 4825-4831.
[33] C. W. Li, J. Ciston, M. W. Kanan, Nature. 508 (2014) 504-7.
[34] A. S. Varela, W. Ju, T. Reier, et al., ACS Catal. 6 (2016) 2136-2144.
[35] D. Gao, F. Scholten, B. R. Cuenya, ACS Catal. 7 (2017) 5112-5120.
[36] H. Liu, Y. Zhou, S. A. Kulinich, et al., J. Mater. Chem. A. 1 (2013) 302-307.