RSC Advances
Paper
polluted with hydrogen cyanide, Environ. Prog. Sustainable
Energy, 2013, 32, 715–720.
propagating high-temperature synthesis method, J. Phys.
Chem. C, 2011, 15, 12850–12863.
24 R. N. Nickolov and D. R. Mehandjiev, Comparative study on 36 X. Chen, S. A. C. Carabineiro and P. B. Tavares, Catalytic
removal efficiency of impregnated carbons for hydrogen
cyanide vapors in air depending on their phase
oxidation of ethyl acetate over La–Co and La–Cu oxides, J.
Environ. Chem. Eng., 2014, 1, 344–355.
composition and porous textures, J. Colloid Interface Sci., 37 L. Chmielarz, R. Dziembaj, T. Grzybek, J. Klinik, T. Łojewski,
2004, 273, 87–94.
D. Olszewska and H. Papp, Pillared smectite modied with
carbon and manganese as catalyst for SCR of NOx with
NH3. Part I. General characterization and catalyst
screening, Catal. Lett., 2000, 68, 95–100.
25 Y. J. Li, H. Yang, Y. C. Zhang, J. Hu, J. H. Huang, P. Ning and
S. L. Tian, Catalytic decomposition of HCN on copper
manganese oxide at low temperatures: performance and
mechanism, Chem. Eng. J., 2018, 346, 621–629.
26 E. C. Njagi, C. H. Chen, H. Genuino, H. Galindo, H. Huang
and S. L. Suib, Total oxidation of CO at ambient
temperature using copper manganese oxide catalysts
38 Q. Jin, Y. He, M. Miao, C. Guan, Y. Du, J. Feng and D. Li,
Highly selective and stable PdNi catalyst derived from
layered double hydroxides for partial hydrogenation of
acetylene, Appl. Catal., A, 2015, 500, 3–11.
prepared by a redox method, Appl. Catal., B, 2010, 99, 103– 39 W. J. Zhu, X. Chen, J. H. Jin, X. Di, C. H. Liang and Z. M. Liu,
110.
Insight into catalytic properties of Co3O4–CeO2 binary oxides
for propane total oxidation, Chin. J. Catal., 2020, 41, 679–
690.
´
27 L. Chmielarz, P. Kustrowski, R. Dziembaj and E. F. Vansant,
Catalytic performance of various mesoporous silicas
modied with copper or iron oxides introduced by 40 X. J. Yao, L. Chen, T. T. Kong, S. M. Ding, Q. Luo and
different ways in the selective reduction of NO by
ammonia, Appl. Catal., B, 2006, 62, 369–380.
28 P. W. Ye, Z. Q. Luan and K. Li, The use of a combination of
F. M. Yang, Support effect of the supported ceria-based
catalysts during NH3–SCR reaction, Chin. J. Catal., 2017,
38, 1423–1430.
activated carbon and nickel microbers in the removal of 41 R. W. Tarnuzzer, J. Colon, S. Patil and S. Seal, Vacancy
hydrogen cyanide from air, Carbon, 2009, 47, 1799–1805.
29 C. W. Sun, J. Sun, G. L. Xiao, H. R. Zhang, X. P. Qiu, H. Li and
L. Q. Chen, Mesoscale organization of nearly monodisperse
engineered ceria nanostructures or protection from
radiation-induced cellular damage, Nano Lett., 2005, 5,
2573–2577.
owerlike ceria microspheres, J. Phys. Chem. B, 2006, 110, 42 Q. Wang, X. Wang, L. Wang, Y. N. Hu, P. Ning, Y. X. Ma and
13445–13452.
L. M. Tan, Catalytic oxidation and hydrolysis of HCN over
LaxCuy/TiO2 catalysts at low temperatures, Microporous
Mesoporous Mater., 2019, 282, 260–268.
30 J. F. Li, G. Z. Lu, H. F. Li, Y. Q. Wang and Y. Guo, Facile
synthesis of 3D owerlike CeO2 microspheres under mild
condition with high catalytic performance for CO 43 B. R. Strohmeier and D. M. Hercules, Surface spectroscopic
oxidation, J. Colloid Interface Sci., 2011, 360, 93–99.
characterization of manganese/aluminum oxide catalysts,
31 B. Yang, W. Deng, L. Guo and T. Ishihara, Copper–ceria solid
J. Phys. Chem., 1984, 88, 4922–4929.
solution with improved catalytic activity for hydrogenation 44 W. S. Kijlstra, J. C. M. L. Daamen, J. M. Graaf, E. K. Poels and
of CO2 to CH3OH, Chin. J. Catal., 2020, 41, 1348–1359.
32 A. Zhou, J. Wang and H. Wang, Effect of active oxygen on the
performance of Pt/CeO2 catalysts for CO oxidation, J. Rare
Earths, 2018, 36, 257–264.
33 R. Xu, X. Wang, D. S. Wang, K. B. Zhou and Y. D. Li, Surface
structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic
oxidation of CO, J. Catal., 2006, 237, 426–430.
34 W. J. Shen, C. Liu, H. J. Guo, L. H. Yang, X. N. Wang and
Z. C. Feng, Synthesis of Zero, One, and Three Dimensional
CeO2 Particles and CO Oxidation over CuO/CeO2, Chin. J.
Catal., 2011, 32, 1136–1141.
35 B. Guan, H. Lin, L. Zhu and Z. Huang, Selective Catalytic
reduction of NOx with NH3 over Mn Ce substitution
Ti0.9V0.1O2ꢁd nanocomposites catalysts prepared by self-
A. Bliek, Inhibiting and deactivating effects of water on the
selective catalytic reduction of nitric oxide with ammonia
over MnOx/Al2O3, Appl. Catal., B, 1996, 7, 337–357.
45 G. D. Ramis, L. Yi, G. D. Busca, M. Turco, E. Kotur and
R. J. Willey, Adsorption, activation, and oxidation of
ammonia over SCR catalysts, J. Catal., 1995, 157, 523–535.
46 J. J. Zhang, Z. G. Feng, J. T. Lu and C. S. Cha, Ex situ FTIR
reection–absorption spectroscopic studies of surface lms
on copper electrode formed in cyanide and thiocyanate
solutions, Chin. J. Inorg. Chem., 1990, 6, 319–323.
47 N. V. Skorodumova, S. I. Simak, B. I. Lundqvist and
B. Johansson, Quantum origin of the oxygen storage
capability of ceria, Phys. Rev. Lett., 2002, 89, 166601–166604.
8896 | RSC Adv., 2021, 11, 8886–8896
© 2021 The Author(s). Published by the Royal Society of Chemistry