Journal of the American Chemical Society
COMMUNICATION
’ ACKNOWLEDGMENT
The research at EWU was supported by KRF/MEST of Korea
through CRI (to W.N.) and GRL (2010-00353) and WCU
(R31-2008-000-10010-0) (to S.F. and W.N.). The work at OU
was supported by a Grant-in-Aid (20108010) and a Global COE
Program, “the Global Education and Research Center for Bio-
Environmental Chemistry”, from the Ministry of Education,
Culture, Sports, Science, and Technology, Japan (to S.F.)
’ REFERENCES
(1) (a) Biological Inorganic Chemistry: Structure and Reactivity;
Bertini, I., Gray, H. B., Stiefel, E. I., Valentine, J. S., Eds.; University
Science Books: Sausalito, CA, 2007. (b) Ortiz de Montellano, P. R.
Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed.;
Kluwer Academic/Plenum Publishers: New York, 2005. (c) Biomimetic
Oxidations Catalyzed by Transition Metal Complexes; Meunier, B., Ed.;
Imperial College Press: London, 2000.
Figure 4. Difference UVꢀvis spectral changes in the reaction of
[(N4Py)FeIV(O)]2þ (1.0 ꢂ 10ꢀ4 M) with p-methoxythioanisole (4.0
ꢂ 10ꢀ3 M) in the presence of Sc3þ (4.0 ꢂ 10ꢀ3 M) in MeCN at 298 K.
The inset shows the time courses monitored at 580 nm for p-metho-
xythioanisole radical cation and 695 nm for [(N4Py)FeIV(O)]2þ
.
(2) (a) Nam, W. Acc. Chem. Res. 2007, 40, 465 and review articles in
the special issue. (b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev.
2004, 104, 3947. (c) Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem.
Rev. 2005, 105, 2227. (d) Espenson, J. H. Coord. Chem. Rev. 2005,
249, 329. (e) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I.
Chem. Rev. 2005, 105, 2253. (f) Borovik, A. S. Acc. Chem. Res. 2005,
38, 54. (g) Bakac, A. Coord. Chem. Rev. 2006, 250, 2046. (h) Krebs, C.;
Fujimori, D. G.; Walsh, C. T.; Bollinger, J. M., Jr. Acc. Chem. Res. 2007,
40, 484. (i) Nam, W. Acc. Chem. Res. 2007, 40, 522. (j) Comba, P.; Kerscher,
M.; Schiek, W. Prog. Inorg. Chem. 2007, 55, 613.
(3) (a) Arias, J.; Newlands, C. R.; Abu-Omar, M. M. Inorg. Chem.
2001, 40, 2185. (b) Fertinger, C.; Hessenauer-Ilicheva, N.; Franke, A.;
van Eldik, R. Chem.—Eur. J. 2009, 15, 13435. (c) Arunkumar, C.; Lee,
Y.-M.; Lee, J. Y.; Fukuzumi, S.; Nam, W. Chem.—Eur. J. 2009, 15, 11482.
(d) Kumar, A.; Goldberg, I.; Botoshansky, M.; Buchman, Y.; Gross, Z. J.
Am. Chem. Soc. 2010, 132, 15233. (e) Benet-Buchholz, J.; Comba, P.;
Llobet, A.; Roeser, S.; Vadivelu, P.; Wiesner, S. Dalton Trans. 2010,
39, 3315.
(4) (a) Goto, Y.; Matsui, T.; Ozaki, S.; Watanabe, Y.; Fukuzumi, S. J.
Am. Chem. Soc. 1999, 121, 9497. (b) Baciocchi, E.; Gerini, M. F.;
Lanzalunga, O.; Lapi, A.; Lo Piparo, M. G. Org. Biomol. Chem. 2003,
1, 422.
(5) Khenkin, A. M.; Leitus, G.; Neumann, R. J. Am. Chem. Soc. 2010,
132, 11446.
(6) (a) Shaik, S.; Wang, Y.; Chen, H.; Song, J.; Meir, R. Faraday
Discuss. 2010, 145, 49. (b) Porro, C. S.; Sutcliffe, M. J.; de Visser, S. P. J.
Phys. Chem. A 2009, 113, 11635. (c) Kumar, D.; de Visser, S. P.; Sharma,
P. K.; Hirao, H.; Shaik, S. Biochemistry 2005, 44, 8148. (d) Sharma, P. K.;
de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 8698.
(7) Park, M. J.; Lee, J.; Suh, Y.; Kim, J.; Nam, W. J. Am. Chem. Soc.
2006, 128, 2630.
by rapid OAT from [(N4Py)FeIII(O)]þ to the radical cation
(ArSR•þ), as described in Scheme 1b,c.
When the ΔGet value becomes more negative than 0.4 eV, the
ket value becomes smaller than the kobs value for DOT. Thus, the
borderline between the DOT pathway (Scheme 1a) and the
ETOT pathway (Scheme 1b,c) may be determined by the Eox
value of the para-X-substituted thioanisole, ∼1.6 V vs SCE, that
corresponds to p-cyanothioanisole.
The occurrence of electron transfer is clearly shown in the case
of p-methoxythioanisole in the presence of Sc3þ (4 mM), where
the driving force for electron transfer is positive (ꢀΔGet = 0.01 eV).
As shown in Figure 4, the transient absorption band at 580 nm
due to p-methoxythioanisole radical cation appears, accompanied
by a decrease in the absorption band at 695 nm due to [(N4Py)
FeIV(O)]2þ (for the reference spectrum of p-methoxyanisole
radical cation, see Figure S5).18 This result clearly demonstrates
that the ETOT pathway becomes dominant over the DOT pathway
when the sulfoxidation by the iron(IV)ꢀoxo complex is carried out
in the presence of a metal ion (Scheme 1).
In summary, we have demonstrated that Sc3þ ion promotes
sulfoxidation of thioanisoles significantly via Sc3þ ion-coupled
electron transfer and that the borderline between a direct oxygen
atom transfer pathway (Scheme 1a) and an electron-transfer
pathway (Scheme 1b,c) is determined by the Eox value of
thioanisole that is ∼1.6 V vs SCE. Thus, the present study
provides a new and rational way to enhance the reactivity of high-
valent metalꢀoxo species by binding of redox-inactive metal ions
such as Sc3þ. The generality of this idea is under investigation.
(8) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
Stubna, A.; Kim, J.; M€unck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc.
2004, 126, 472.
(9) An acceleration effect of metal ions (including Sc3þ) on OAT
from high-valent manganeseꢀoxo complexes to triphenylphosphine or
olefins has been reported, although the acceleration mechanism has yet
to be clarified. See: Miller, C. G.; Gordon-Wylie, S. W.; Horwitz, C. P.;
Strazisar, S. A.; Peraino, D. K.; Clark, G. R.; Weintraub, S. T.; Collins,
T. J. J. Am. Chem. Soc. 1998, 120, 11540.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, second-
b
order rate constants (Table S1), pseudo-first-order kinetics
(Figure S1), second-order kinetics (Figures S2), the linear plot
of (kobs ꢀ k0)/[Sc3þ] vs [Sc3þ] (Figure S3), the dependence of
kobs on [Sc3þ] for other substrates (Figure S4), and UVꢀvis
spectra for p-MeO-PhSMe•þ (Figure S5). This material is
(10) The products and product yields formed in the presence of
Sc3þ were the same as those reported in the reactions carried out in the
absence of Sc3þ (see ref 7 and the Experimental Section in the SI).
(11) Morimoto, M.; Kotani, H.; Park, J.; Lee, Y.-M.; Nam, W.;
Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 403.
(12) An X-ray crystal structure of a Sc3þ-bound iron(IV)ꢀoxo
complex has been reported. See: (a) Fukuzumi, S.; Morimoto, Y.;
Kotani, H.; Naumov, P.; Lee, Y.-M.; Nam, W. Nat. Chem. 2010,
2, 756. (b) Karlin, K. D. Nat. Chem. 2010, 2, 711.
’ AUTHOR INFORMATION
Corresponding Author
wwnam@ewha.ac.kr; fukuzumi@chem.eng.osaka-u.ac.jp
5238
dx.doi.org/10.1021/ja200901n |J. Am. Chem. Soc. 2011, 133, 5236–5239