10.1002/chem.201904948
Chemistry - A European Journal
FULL PAPER
of the ratio in disulfide distribution was accomplished by GC-FID or GCMS
analysis. Furthermore, for the resolution of overlaid components in the gas
chromatogram measurements in selected ion monitoring (SIM) mode were
performed.
extended until all six components 1-6 were present. At the end
the undivided six-membered matrix was obtained in the same
manner (see Figure 6).
Keywords: alternating current • mixed disulfides •
electrochemistry • dynamic libraries • sulfur-sulfur bond
metathesis
Conclusions
In this investigation we were able to show that the sulfur-sulfur
bond metathesis can be realised by catalytic amounts of electricity
and we applied an alternating current approach to ensure the
formation of all combinations of symmetrical und unsymmetrical
disulfides. Furthermore, alternating current avoided the formation
of undesired side products, the consumption of the starting
materials in unproductive reaction pathways and the formation of
insulating precipitates on the electrode surface in contrast to
direct current. In addition, alternating current electrolysis allows
the formation of the desired disulfides whether in catalytic or over-
stoichiometric amounts of current without decomposition. The
analysis of the products was realised by GCMS and GC-FID
analysis and the choice of starting materials with differing
molecular masses helped to analyse overlapping peaks when
selected ion monitoring was utilised in the GCMS analysis.
Therefore, all disulfides 1-21 could be identified by GCMS and in
one example, the presence of three disulfides in a broad peak
could be proven. The dynamic nature of the matrices could be
shown by split and mix approaches. When the mixing of the
matrices were performed shortly after electrolysis the presence of
active species in the solution allowed the further formation of the
complete matrix without any further electrolysis needed. However,
when the active species were removed by filtration, renewed
electrolysis started the process of the sulfur-sulfur metathesis
right away. Therefore, we are convinced that these results
represent a much needed tool which will be of great interest for
those scientists conducting systems chemistry in the future where
fast responses to changing conditions rely on reversible
processes that can be easily initiated. The sulfur-sulfur bond
metathesis seems to be an excellent example for this type of
chemistry and the alternating current electrolysis is a key element
to achieve this goal.
[1]
a) R. F. Ludlow, S. Otto, Chem. Soc. Rev. 2008, 37, 101; b) G. von
Kiedrowski, S. Otto, P. Herdewijn, J. Sys. Chem. 2010, 1, 1; c) G.
Ashkenasy, T. H. Hermans S. Otto, A. F. Taylor, Chem. Soc. Rev. 2017,
46, 2543.
[2]
a) B. Bartolec, G. Leonetti, J. Li, W. Smit, M. Altay, G. M. Santiago, Y.
Yan, S. Otto, Langmuir 2019, 35, 5787; b) B. Liu, C. G. Pappas, E.
Zangrando, N. Demitri, P. J. Chmielewski, S. Otto, J. Am. Chem. Soc.
2019, 141, 1685; c) M. Malakoutikhah, G. Schaeffer, G. M. Santiago, S.
Yang, I. Marić, S. Otto, J. Sys. Chem. 2019, 7, 9.
[3]
[4]
[5]
S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F.
Stoddart, Angew. Chem. 2002, 114, 938; Angew. Chem. Int. Ed. 2002,
41, 898.
a) J. N. H. Reek, P. F. Dydio, Eur. Pat. Appl. 2013, EP 2559484; b) V.
Patroniak, Wiadomosci Chemiczne 2010, 64, 285; c) U. C. Agrawal, H.
L. Nigam, J. Ind. Chem. Soc. 2008, 85, 677.
For the electrochemistry of thioles and disulfides, see: a) S. Torii,
Electroorganic Reduction Synthesis, Vol. 1, Chpt. 6, 2006, Wiley-VCH,
Tokyo; see also: b) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017,
117, 13230; c) M. D. Kärkäs, Chem. Soc. Rev. 2018, 47, 5786; d) A.
Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel,
Angew. Chem. 2018, 130, 5694; Angew. Chem. Int. Ed. 2018, 57, 5594;
e) P.-G. Echeverria, D. Delbrayelle, A. Letort, F. Nomertin, M. Perez, L.
Petit, Aldrichim. Acta 2018, 51, 3; f) S. Kitada, M. Takahashi, Y.
Yamaguchi, Y. Okada, K. Chiba, Org. Lett. 2012, 14, 5960-5963;.g) K.
Matsumoto, H. Shimazaki, T. Sanada, K. Shimada, S. Hagiwara, S. Suga,
S. Kashimura, J.-i. Yoshida, Chem. Lett. 2013, 42, 843-845; h) P. Wang,
S. Tang, P. Huang, A. Lei, Angew. Chem. 2017, 129, 3055-3059; Angew.
Chem. Int. Ed. 2017, 56, 3009-3013.
[6]
[7]
For recent examples, see: a) B. M. Matysiak, P. Nowak, I. Cvtila, C. G.
Pappas, B. Liu, D. Komáromy, S. Otto, J. Am. Chem. Soc. 2017, 139,
6744; b) B. Bartolec, M. Altay, S. Otto, Chem. Commun. 2018, 54, 13096;
c) M. Altay, Y. Altay and S. Otto, Angew. Chem. 2018, 130, 10724;
Angew. Chem. Int. Ed. 2018, 57, 10564, d) S. Otto, R. L. E. Furlan, J. K.
M. Sanders, Science 2002, 297, 590-593.
a) R. H. Verschueren, W. M. De Borggraeve, Molecules 2019, 24, 2122;
b) J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35, 605; c) H. A.
Lund J. Electrochem. Soc. 2002, 149, S21.
Experimental Section
[8]
[9]
O. Hammerich and B. Speiser, Organic Electrochemistry, 5th Ed. 2016,
Taylor&Francis, Boca Ratton.
General Procedure for an Alternating Current Electrolysis: Both
compartments of an H-type divided cell were equipped with a magnetic
stirring bar and charged with 988 mg (3.00 mmol) TBABF4. The supporting
electrolyte was dissolved in 10 mL CH3CN in each compartment.
Afterwards, 109 mg (0.500 mmol, 1.0 equiv.) diphenyl disulfide (1),
95.1 µL (0.500 mmol, 1.0 equiv.) di-n-butyl disulfide (2), 115 mg
(0.500 mmol, 1.0 equiv.) dicyclohexyl disulfide (3), 201 mg (0.499 mmol,
1.0 equiv.) di-n-dodecyl disulfide (4), 123 mg (0.500 mmol, 1.0 equiv.) di-
p-tolyl disulfide (5), 143 mg (0.500 mmol, 1.0 equiv) Bis(p-methoxyphenyl)
disulfide (6) and 0.5 mL (0.500 mmol, 1.0 equiv.) n-dodecane solution
(1.0 M in CHCl3) as internal standard were added in both compartments.
At last, the electrodes (first compartment platinum, second compartment
glassy carbon) were immerged into the solution (surface area: 1.0 cm²)
and a constant current (10 mA) with an alternation in electrode polarisation
of 5 s (t1 = 4 s pulse time, t2 = 1 s quiet time) was applied. After 15 min
(0.15 F·mol-1) a sample for GCMS analysis was taken. The determination
a) Q. T. Do, D. Elothmani, G. Le Guillanton, J. Simonet, Tetrahedron Lett.
1997, 38, 3383; For recent reviews on electrochemical cation-pool
chemistry, see b) J.-i. Yoshida, A. Shimizu, R. Hayashi, Chem. Rev. 2018,
118, 4702; c) K. Matsumoto, S. Suga, J.-i. Yoshida, Org. Biomol. Chem.
2011, 9, 2586.
[10] P. Huang, P. Wang, S. Tang, Z. Fu and A. Lei, Angew. Chem. 2018, 130,
8247; Angew. Chem. Int. Ed. 2018, 57, 8115.
[11] a) S. Boryczka, D. Elothmani, Q. T. Do, J. Simonet, G. Le Guillanton, J.
Electrochem. Soc. 1996, 143, 4027; b) Q. T. Do, D. Elothmani, G. Le
Guillanton, Electrochim. Acta 2005, 50, 4792.
[12] a) C. Grogger, S. G. Fattakhov, V. V. Jouikov, M. M. Shulaeva, V. S.
Reznik, Russ. J. Gen. Chem. 2005, 75, 386; b) S. Antonello, R. Benassi,
G. Gavioli, F. Taddei, F. Maran, J. Am. Chem. Soc. 2002, 124, 7529.
This article is protected by copyright. All rights reserved.