Organic Letters
Letter
converted to 22. Isomerization of exo olefin 22 using acid or
transition-metal catalysts was examined, but we only observed
recovery or decomposition of the starting material. However, a
density functional theory calculation (B3LYP/6-31G*) in-
dicated that the energy level of exo-22 in the ground state is
higher than that of endo-2b (ΔE° = +5.5 kcal/mol).
Encouraged by the result, we continued to examine the
isomeriazation under basic conditions. We speculated that
formation of the allyl anion from 22 would promote
isomerization to the endo olefin, because the countercation
bound to the C(1) atom could be stabilized by chelation with
the anionic oxygen atom generated from the tert-hydroxyl
group. Treatment of 22 with excess KAPA (potassium 3-
aminopropylamide),24 prepared from potassium hydride and
1,3-diaminopropane, successfully promoted isomerization to
the endo cyclic olefin, to give protoilludenol (2b), which was
isolated by Nozoe and co-workers from the mycelium of
Fomitopsis insularis.8 Finally, acetylation of 2b with acetic
anhydride (as the solvent) in the presence of pyridine rendered
2a in 73% yield. The physical properties of ( )-2a (1H and
13C NMR spectra and low-resolution MS) were identical to
those reported for paesslerin A.7
In conclusion, a novel multicomponent reaction involving
three mechanistically distinct Tf2NH-catalyzed reactions[4
+ 2] and [2 + 2] cycloadditions, and isomerizationwas
developed. The reaction cascade enables the assembly of a
skewed 5/6/4 tricyclic motif with migration of the reactive site
with the assistance of the catalyst. We used this process for
rapid construction of the protoilludane skeleton as a key step
in the first total synthesis of the racemic protoilludene
sesquiterpenes, protoilludenol and paesslerin A, in 17 and 18
overall steps, respectively, from 5,5-dimethyl-2-cyclopente-
none. This achievement led to revision of the originally
assigned tricyclic structure of paesslerin A. The synthesis also
features the regioselective C−H insertion of a silicon-tethered
sulfonyl carbenoid and base-promoted isomerization of an exo
olefin to the endo one without decomposition of the unstable
tert-cyclobutanol moiety.
Present Address
¶Graduate School of Pharmaceutical Sciences, Tokushima
University, Shomachi, Tokushima 770−8505, Japan.
Author Contributions
§These authors contributed equally to this manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank JSPS KAKENHI (Grant No. 16H05073), MEXT
KAKENHI (Grant Nos. JP16H01147 and JP18H04406 in
Middle Molecular Strategy), and AMED Platform for
Supporting Drug Discovery and Life Science Research, the
Uehara Memorial Foundation, and the Hoansha Foundation.
REFERENCES
■
(1) Dewick, P. M. Medicinal Natural Products: A Biosynthetic
Approach; Wiley: Chichester, U.K., 2002.
(2) (a) Tietze, L. F. Domino Reactions: Concepts for Organic Synthesis;
Wiley−VCH: Weinheim, Germany, 2014. (b) Nicolaou, K. C.; Chen,
J. S. Chem. Soc. Rev. 2009, 38, 2993−3009. (c) Pellissier, H. Chem.
Rev. 2013, 113, 442−524.
(3) (a) Zhu, J.; Wang, Q.; Wang, M. Multicomponent Reactions in
Organic Synthesis; Wiley−VCH: Weinheim, Germany, 2014. (b) Mu
ler, T. J. J., Ed. Science of Synthesis: Multicomponent Reactions, Vols. 1
̈
l-
́
and 2; Thieme: Stuttgart, Germany, 2014. (c) Toure, B. G.; Hall, D.
G. Chem. Rev. 2009, 109, 4439−4486. (d) Villaume, M. T.; Baran, P.
S. Nature 2014, 513, 324−325. (e) Sahn, J. J.; Granger, B. A.; Martin,
S. F. Org. Biomol. Chem. 2014, 12, 7659−7672.
(4) (a) Vaxelaire, C.; Winter, P.; Christmann, M. Angew. Chem., Int.
Ed. 2011, 50, 3605−3607. (b) Calder, E. D. D.; Grafton, M. W.;
Sutherland, A. Synlett 2014, 25, 1068−1080.
(5) (a) Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004, 248,
2365−2379. (b) Shindoh, N.; Takemoto, Y.; Takasu, K. Chem. - Eur.
J. 2009, 15, 12168−12179. (c) Takasu, K. Yuki Gosei Kagaku
Kyokaishi 2014, 72, 770−780.
(6) (a) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2004,
126, 1352−1353. (b) Takasu, K.; Inanaga, K.; Ihara, M. Tetrahedron
Lett. 2008, 49, 4220−4222.
ASSOCIATED CONTENT
* Supporting Information
■
S
(7) Rodriguez Brasco, M. F.; Seldes, A. M.; Palermo, J. A. Org. Lett.
2001, 3, 1415−1417.
The Supporting Information is available free of charge on the
(8) Nozoe, S.; Kobayashi, H.; Urano, S.; Furukawa, J. Tetrahedron
Lett. 1977, 18, 1381−1384.
(9) Quin, M. B.; Flynn, C. M.; Schmidt-Dannert, C. Nat. Prod. Rep.
2014, 31, 1449−1473.
Experimental procedures and characterization data for
Characterization data for the products (PDF)
(10) Abraham, W. R. Curr. Med. Chem. 2001, 8, 583−606.
(11) As a review, see: (a) Siengalewicz, P.; Mulzer, J.; Rinner, U. Eur.
J. Org. Chem. 2011, 2011, 7041−7055. As representative examples,
see: (b) Semmelhack, M. F.; Tomoda, S.; Nagaoka, H.; Boettger, S.
D.; Hurst, K. M. J. Am. Chem. Soc. 1982, 104, 747−759. (c) Rychlet
Elliott, M.; Dhimane, A.-L.; Malacria, M. J. Am. Chem. Soc. 1997, 119,
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
̈
3427−3428. (d) Kogl, M.; Brecker, L.; Warrass, R.; Mulzer, J. Angew.
Chem., Int. Ed. 2007, 46, 9320−9322. (e) Schwartz, B. D.; Matousova,
E.; White, R.; Banwell, M. G.; Willis, A. C. A. Org. Lett. 2013, 15,
1934−1937. (f) Baumann, A. N.; Eisold, M.; Didier, D. Org. Lett.
2017, 19, 2114−2117.
(12) (a) Pitaval, A.; Leboeuf, D.; Ceccon, J.; Echavarren, A. M. Org.
Lett. 2013, 15, 4580−4583. (b) Hovey, M. T.; Cohen, D. T.; Walden,
D. M.; Cheong, P. H.-Y.; Scheidt, K. A. Angew. Chem., Int. Ed. 2017,
56, 9864−9867.
(13) Inanaga, K.; Ogawa, Y.; Nagamoto, Y.; Daigaku, A.; Tokuyama,
H.; Takemoto, Y.; Takasu, K. Beilstein J. Org. Chem. 2012, 8, 658−
661.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(14) Jung, M. E.; Ho, D. G. Org. Lett. 2007, 9, 375−378.
D
Org. Lett. XXXX, XXX, XXX−XXX