ORGANIC
LETTERS
2
2003
Vol. 5, No. 1
First Synthesis of a â -Homoamino Acid
7
9-80
by Enantioselective Catalysis
Audrius Rimkus and Norbert Sewald*
Faculty of Chemistry, UniVersity of Bielefeld, PO Box 10 01 31,
D-33501 Bielefeld, Germany
Received November 8, 2002
ABSTRACT
The enantioselective conjugate addition of diethylzinc to the activated nitroolefin methyl 3-nitropropenoate is efficiently catalyzed by copper(I)
complexes with BINOL-based enantiopure phosphoramidite ligands. The nitroolefin moiety acts as the predominant Michael acceptor, giving
rise to the unambiguous formation of 2-alkyl-3-nitro-propanoates. Moderate to excellent enantioselectivities and high chemical yields are
2
obtained. The product can easily be transformed into a â -homoamino acid.
The conjugate addition of carbon nucleophiles to R,â-
unsaturated compounds belongs to the classical carbon-
carbon bond forming strategies. The versatility of this
In recent years several ligands have been utilized in the
enantioselective conjugate addition of diorganozinc com-
1
7
pounds to nitroolefins. 3-Nitropropenoates are ideally suited
2
reaction type is due to the wide variety of donors (organo-
metallic reagents, Michael donors, other carbanions) and
as precursors of â -homoamino acids as the side chain R
2
may be introduced by conjugate addition of R Zn. Herein
2
acceptors (R,â-unsaturated reagents) that can be employed.
we describe an enantioselective conjugate addition of dieth-
ylzinc to the activated nitroolefin methyl 3-nitropropenoate8
2 catalyzed by BINOL-based enantiopure copper(I)/phos-
phoramidite complexes (Scheme 1). The synthesis of cata-
lysts of this type and their application in conjugate additions
of dialkylzinc compounds to various enones have been first
In particular, the use of dialkylzinc reagents has been
extremely successful in the development of highly enantio-
2
b,3
selective catalytic conjugate additions in recent years.
4
The addition of nucleophiles to nitroolefins represents a
convenient access to nitroalkanes that are versatile intermedi-
ates in organic synthesis. The nitro functionality can be easily
transformed into an amine, an oxime, a ketone, or a
carboxylic acid, etc., providing a wide range of synthetically
9
reported by Feringa et al. The influence of the nature of
the copper salt on the stereoselectivity of conjugate additions
has been recently investigated by us and Alexakis et al.10
5
2
interesting compounds. Among these, â -homoamino acids
side chain at C , amino group at C ) are of special interest,
R
â
(
(
5) (a) Barrett, A. G. M.; Grabowski, G. Chem. ReV. 1986, 86, 751-
7
2
62. (b) Kabalka, G. W.; Varma, R. S. Org. Prep. Proced. Int. 1987, 19,
83-328. (b) Perekalin, V. V.; Lipina, E. S.; Berestovitskaya, V. M.;
Efremov, D. A. Nitroalkenes, Conjugated Nitrocompounds; John Wiley &
as the corresponding â-peptides adopt novel and unique
6
folding patterns. Syntheses of this class of compounds
employing asymmetric catalysis have not yet been described.
Sons: New York, 1994.
(
6) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001,
(
1) Jung, M. E. ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp 1-67.
2) (a) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis;
101, 3219-3232.
(7) (a) Sewald, N.; Wendisch, V. Tetrahedron: Asymmetry 1998, 9,
1341-1344. (b) Alexakis, A.; Benhaim, C. Org. Lett. 2000, 2, 2579-2581.
(c) Versleijen, J. P. G.; van Leusen, A. M.; Feringa, B. L. Tetrahedron
Lett. 1999, 40, 5803-5806. (d) Ongeri, S.; Piarulli, U.; Jackson, R. F. W.;
Gennari, C. Eur. J. Org. Chem. 2001, 803-807. (e) Luchaco-Cullis, C. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 8192-8193.
(8) For synthesis of nitroolefins, see also: (a) Shin, C.; Yamaura, M.;
Inui, E.; Ishida, Y.; Yoshimura, J. Bull. Chem. Soc. Jpn. 1978, 51, 2618-
2621. (b) Shechter, H.; Conrad, F. J. Am. Chem. Soc. 1953, 75, 5610-
5613. (c) Piet, J. C.; Le Hetet, G.; Cailleux, P.; Benhaoua, H.; Carri e´ , R.
Bull. Soc. Chim. Belg. 1996, 105, 33-44.
(
Pergamon Press: Oxford, 1992. (b) Krause, N.; Hoffmann-R o¨ der, A.
Synthesis 2001, 171-196.
(
3) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346-353. (b) Sibi, M.
P.; Manyem, S. Tetrahedron 2000, 56, 8033-8061.
(4) (a) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Chimia 1979,
3
3, 1-18. (b) Ono, N. The Nitro Group in Organic Synthesis; Wiley-
VCH: New York, 2001. (c) Berner, O. M.; Tedeschi, L.; Enders, D. Eur.
J. Org. Chem. 2002, 1877-1894. (d) Rimkus, A.; Sewald, N. Org. Lett.
2
002, 4, 3289-3291.
1
0.1021/ol027252k CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/10/2002