6438
Garima et al. / Tetrahedron Letters 51 (2010) 6436–6438
6. (a) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043–1052; Kappe, C. O. QSAR Comb.
Sci. 2003, 22, 630–645; (c) Kumar, B. R. P.; Sankar, G.; Baig, R. B.;
Chandrashekaran, S. Eur. J. Med. Chem. 2009, 44, 4192–4198.
7. (a) Sidler, D. R.; Larsen, R. D.; Chartrain, M.; Ikemoto, N.; Roberge, C. M.; Taylor,
C. S.; Li, W.; Bills, G. F. PCT Int. Appl. WO99 07695, 1999.; (b) Bruce, M. A.;
Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO9833791, 1998.
8. (a) Rovnyak, G. C.; Kimball, S. D.; Beyer, B.; Cucinotta, G.; Dimarco, J. D.;
Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; Moreland, S. J.
Med. Chem. 1995, 38, 119–129; (b) Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.;
Kimball, S. D.; Moreland, S.; Gougoutas, J.; O’Reilly, B. C.; Schwartz, J.; Malley,
M. J. Med. Chem. 1992, 35, 3254–3263.
3,4-dihydropyrimidin-2(1H)-ones (28–39%) were obtained. This is
probably due to the lower Brønsted acidity associated with
[H2PO4]. Thus, [Hmim]HSO4 plays a dual role, that is, as an acid cat-
alyst and as a solvent for both the oxidation of alcohols and the
subsequent condensation with urea and 1,3-dicarbonyl com-
pounds. A plausible mechanism for the present one-pot oxidative
cyclocondensation of aromatic alcohols, urea, and 1,3-dicrbonyl
compounds is depicted in Scheme 2.
In summary, we have developed a new method for an efficient
Biginelli reaction starting directly from alcohols using NaNO3–
[Hmim]HSO4 system. The protocol involves [Hmim]HSO4 catalyzed
oxidation of alcohols to aldehydes with NaNO3 at 80 °C followed by
their cyclocondensation with the urea and dicarbonyl compounds
to afford 3,4-dihydropyrimidin-2(1H)-ones in a one-pot operation.
Thus, the present work could find useful applications in view of the
power of the Biginelli reaction and that the concept could be ex-
tended as a valid and green alternative to other MCRs involving
aldehyde substrates.
9. (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg,
A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806–811; (b) Grover, G. J.; Dzwonczyk,
S.; Mcmullen, D. M.; Normadinam, C. S.; Slenph, P. G.; Moreland, S. J. J.
Cardiovasc. Pharmacol. 1995, 26, 289–294.
10. (a) Suzuki, I.; Iwata, Y.; Takeda, K. Tetrahedron Lett. 2008, 49, 3238–3241; (b)
Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864–3868; (c)
Chitra, S.; Pandiarajan, K. Tetrahedron Lett. 2009, 50, 2222–2224; (d) Lu, J.; Bai,
Y. J. Synthesis 2002, 466–470; (e) Chen, X.; Peng, Y. Catal. Lett. 2008, 122, 310–
313; (f) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Shakour, I. M.; Otokesh, S.;
Ekrami, T.; Doosti, R. J. Iran. Chem. Soc. 2007, 4, 393–401.
11. (a) Madhane, P. G.; Joshi, R. S.; Nagargage, D. R.; Gill, C. H. Tetrahedron Lett.
2010, 51, 3138–3140; (b) Shobha, D.; Chari, M. A.; Mano, A.; Selvan, S. T.;
Mukkanti, K.; Vinu, A. Tetrahedron 2009, 51, 10608–10611; (c) Bose, D. S.;
Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587–590; (d) Zhang, H.; Zhou,
Z.; Yao, Z.; Xu, F.; Shen, Q. Tetrahedron Lett. 2009, 50, 1622–1624; (e)
Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48, 7343–7346; (f)
Wang, M.; Jiang, H.; Wang, Z. J. Chem. Res. 2005, 691–693.
12. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2084; (b) Wasserscheid, P.; Keim, W.
Angew. Chem., Int. Ed. 2000, 39, 3772–3789; (c) Sheldon, R. Chem. Commun.
2001, 2399–2407.
Acknowledgments
The authors sincerely thank SAIF, Punjab University, Chandigarh,
for providing microanalyses and spectra. One of us (Garima) is grate-
ful to the CSIR, New Delhi, for the award of a Junior Research
Fellowship.
13. (a) Kochi, M. Green Reaction Media for Organic Synthesis; Blackwell, 2005; (b)
Wasserscheid, T.; Welton, T. Ionic Liquids in Organic Synthesis; Wiley-VCH:
Weinheim, 2003.
14. (a) Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C., Jr.;
Davis, J. H. J. Am. Chem. Soc. 2002, 124, 5962–5963; (b) Zhu, H. P.; Yang, F.; Tang,
J.; He, M. Y. Green Chem. 2003, 5, 38–39; (c) Hajipour, A. R.; Rafiee, F.; Ruoho, A.
E. Synlett 2007, 1118–1120; (d) Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.;
Sun, D. Green Chem. 2004, 6, 75–77.
15. (a) Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Tetrahedron 2008, 64, 1420–
1429; (b) Garima; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2010, 12, 1460–
1465; (c) Yadav, L. D. S.; Garima; Srivastava, V. P. Tetrahedron Lett. 2010, 51,
739–743; (d) Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Synlett 2010, 1047–1050;
(e) Patel, R.; Srivastava, V. P.; Yadav, L. D. S. Adv. Synth. Catal. 2010, 352, 1610–
1614.
16. A typical procedure for the formation of 3,4-dihydropyrimidin-2-(1H)-ones 4: A
mixture of an aryl alcohol (3 mmol), sodium nitrate (3 mmol), and
[Hmim]HSO4 (1.20 mmol) was heated with stirring at 80 °C for 5–30 min in
a round-bottomed flask. After oxidation of the aromatic alcohol (monitored by
TLC, n-hexane/ethyl acetate, 80:20), b-dicarbonyl compound (3 mmol) and
urea (3.0 mmol) were added. The mixture was heated with stirring at 80 °C for
1.5–4 h. On completion of the reaction, as indicated by TLC (n-hexane/ethyl
acetate: 60:40), the reaction mixture was cooled to rt, then cold water was
added. The precipitated product was separated by simple filtration. The crude
product was recrystallized from ethanol to obtain an analytical sample of 4.
The structure of the products was confirmed by comparison of their mp, TLC,
IR, and 1H NMR data with authentic samples obtained commercially or
prepared by the literature method.10b,d–f,11f
References and notes
1. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115–136; (b) Tietze, L. F.; Brasche, G.;
Gericke, K. M. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim,
2006.
2. (a) Ekoue-Kovi, K.; Wolf, C. Chem. Eur. J. 2008, 14, 6302–6315; (b) Davi, M.; Lebel,
H. Org. Lett. 2009, 11, 41–44; (c) Maki, B. E.; Scheidt, K. A. Org. Lett. 2009, 11, 1651–
1654; (d) Donald, J. R.; Edwards, M. G.; Taylor, R. J. K. Tetrahedron Lett. 2007, 48,
5201–5204;(e) McAllister, G. D.; Oswald, M. F.;Paxton, R. J.;Raw, S. A.;Taylor, R. J.
K. Tetrahedron 2006, 62, 6681–6694; (f) Bromley, W. J.; Gibson, M.; Lang, S.; Raw,
S. A.; Whitwood, A. C.; Taylor, R. J. K. Tetrahedron 2007, 63, 6004–6014.
3. (a) Taylor, R. J. K.; Reid, M.; Foot, J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851–869;
(b) Raw, S. A.; Reid, M.; Roman, E.; Taylor, R. J. K. Synlett 2004, 819–822; (c)
Blackburn, L.; Pei, C.; Taylor, R. J. K. Synlett 2002, 215–218; (d) Reid, M.; Rowe,
D. J.; Taylor, R. J. K. Chem. Commun. 2003, 2284–2285; (e) Quesada, E.; Taylor, R.
J. K. Tetrahedron Lett. 2005, 46, 6473–6476; (f) Foot, J. S.; Kanno, H.; Giblin, G. M.
P.; Taylor, R. J. K. Synthesis 2003, 1055–1064; (g) Phillips, D. J.; Pillinger, K. S.;
Wei, L.; Taylor, A. E.; Graham, A. E. Chem. Commun. 2006, 2280–2282.
4. (a) Brioche, J.; Masson, G.; Zhu, J. Org. Lett. 2010, 12, 1432–1435; (b)
Ngouansavanh, T.; Zhu, J. Angew. Chem., Int. Ed. 2006, 45, 3495–3497; (c)
Khosropour, A. R.; Khodaei, M. M.; Beygzadeh, M.; Jokar, M. Heterocycles 2005,
65, 767–773.
5. (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360–413; (b) Kappe, C. O. Tetrahedron
1993, 49, 6937–6963.