5
876
The high reactivity of 2b in comparison with 2a in this type of reaction can also be explained in
terms of the ability of the tri¯uoroethoxyl group as a leaving group.
In summary, we have found a new preparation method of 2b using an electrochemical oxidation
of 3. The method is very convenient not only for large-scale production but also for laboratory-
scale experimentation since the starting compound 3 is easily available and the electrochemical
method allows us to achieve the aimed oxidation without any oxidizing reagent. Also, we have
demonstrated the novel reactivity of 2b which could be utilized as an equivalent of 1 in a dierent
way from the corresponding ethyl derivative 2a. Further utilization of 2b for the synthesis of tri-
¯uoromethyl-containing compounds is now under investigation.
References
1
. (a) Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. Tetrahedron Lett. 1988, 29, 4665±4668. (b) Iseki, K.; Oishi, S.;
Kobayashi, Y. Tetrahedron 1996, 52, 71±84. (c) Mikami, K.; Yajima, T.; Takasaki, T.; Matsukawa, S.; Terada,
M.; Uchimaru, T.; Maruta, M. Tetrahedron 1996, 52, 85±98. (d) Iseki, K.; Oishi, S.; Kobayashi, Y. Chem. Pharm.
Bull. 1996, 44, 2003±2008. (e) Abouabdellah, A.; Begre, J.-P.; Bonnet-Delpon, D.; Nga, T. T. T. J. Org. Chem.
 Â
1
997, 62, 8826±8833.
. Husted, D. H.; Ahlbrecht, A. H. J. Am. Chem. Soc. 1952, 74, 5422±5426.
. Ishii, A.; Takeda, Y. J. Synth. Org. Chem., Jpn. 1999, 57, 898±899.
. Ferreo, R. M.; Jacquot, R. Eur. Pat. EP 539274, 1993 (Chem. Abstr. 1993, 119, 138494).
. (a) Pierce, O. R.; Kane, T. G. J. Am. Chem. Soc. 1954, 76, 300±301. (b) Lee, S. A. Eur. Pat. EP 516311, 1992
2
3
4
5
(Chem. Abstr. 1993, 118, 80496).
6
7
8
9
. Henne, A. L.; Pelley, R. L.; Alm, R. M. J. Am. Chem. Soc. 1950, 72, 3370±3371.
. Shechter, H.; Conrad, F. J. Am. Chem. Soc. 1950, 72, 3371±3373.
. Siegemung, G. Ger. Pat. DE 2139211, 1973 (Chem. Abstr. 1973, 78, 110577m).
. The product 2b contaminated with a small amount of 3 (ꢂ5%) was obtained. The obtained 2b could be utilized
without puri®cation for further synthetic use. The NMR and IR spectra of the obtained 2b are as follows: IR ꢀmax
:
^
1 1
3
400, 1287, 1125, 1173, 1121, 841 cm ; H NMR (300 MHz, CDCl ): ꢁ 4.01 (q, 2H, J=5.5 Hz), 4.99 (q, 1H,
3
J=3.4 Hz). The identi®cation of 2b was achieved by its conversion to the benzoylated compound: IR ꢀmax: 3069,
^1 1
2
967, 1752, 1603, 1455, 1402, 1362, 1302, 1219, 1136, 1082, 1069, 1030, 1001, 963, 918, 716, 687, 664, 613 cm ; H
NMR (300 MHz, CDCl ): ꢁ 4.18±4.41 (m, 2H), 6.26 (q, 1H, J=3.6 Hz), 7.46±7.58 (m, 2H), 7.62±7.74 (m, 1H),
3
1
3
8
3
.06±8.16 (m, 2H). C NMR (75 MHz, CDCl ): ꢁ 67.1 (q, J=35.7 Hz), 91.4 (q, J=37.6 Hz), 120.6 (q, J=279.2
8 6 3
Hz), 122.9 (q, J=276.6 Hz), 127.6, 128.9, 130.5, 134.7, 165.2. Anal. calcd for C11H F O : C, 43.72; H, 2.67. Found
C, 43.50; H, 2.73.
0. Gong, Y.; Kato, K.; Kimoto, H. Synlett 1999, 1403±1404.
1. Tri¯uoromethylation of furfural has been known for the synthesis of 4. (a) Watanabe, S.; Fujita, T.; Sakamoto, M.;
Mino, Y.; Kitazume, T. J. Fluorine Chem. 1995, 73, 21±26. (b) Yokoyama, Y.; Mochida, K. Synlett 1996, 1191±
1
1
1
2. Matsumura, Y.; Satoh, Y.; Onomura, O.; Maki, T. J. Org. Chem. 2000, 65, 1549±1551.
192.
1
1
^1 1
3. Compound 7: IR ꢀmax: 3420, 2986, 1721, 1613, 1518, 1269, 1240, 1161, 1127 cm ; H NMR (300 MHz, CDCl
3
): ꢁ
.32 (t, 3H, J=7.1 Hz), 2.06 (s, 3H), 3.0 (br s, 1H), 4.15±4.32 (m, 2H), 4.60±4.75 (br s, 1H), 5.0 (br s, 1H), 8.7 (br s,
H).
1
1