M. C. Uzagare et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3537–3540
3539
ratio of the integration of PO (d 0.91) and PS (d 57.32)
signals clearly indicated that there was no desulphur-
isation of phosphorothioate linkage during the NBS–
DMSO based oxidative step. The LC–MS data (not
shown) for 8 further confirmed the structure and purity
of the product.
In summary, NBS–DMSO in CH3CN is a useful
reagent for the oxidation of nucleoside phosphite into
phosphate under nonbasic and nonaqueous conditions.
We demonstrated that this reagent could be used for
synthesis of mixed backbone oligonucleotides in good
yields and high purity both by solid as well as solution-
phase synthesis. The easy accessibility, low-cost, safe
handling and disposal of this new oxidation system is
very attractive for the synthesis of oligonucleotides on a
large scale.
Scheme 3. Solid-phase synthesis of tetramer (n=2). Reagents and
conditions: (i) NBS/DMSO/CH3CN (w/v/v 0.04/0.14/1), rt, 2 min,
CH3CN wash; (ii) detritylation 3% CHCl2COOH–CH2Cl2, 1.8 min;
(iii) NH4OH 55 ꢁC.
Acknowledgements
One of the authors, M.C.U., is grateful to Isis Pharma-
ceuticals for financial assistance and gift of various che-
micals and reagents. We are also thankful to Dr.
Douglas Cole for his encouragement and support
throughout this project.
References and Notes
1. Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 223.
2. Sanghvi, Y. S.; Andrade, M.; Deshmukh, R. R.; Holmberg,
L.; Scozzari, A. N.; Cole, D. L. In Manual of Antisense Meth-
odology; Hartmann, G., Endres, S., Eds.; Kluwer: Norwell,
MA, 1999; p 3.
3. Beaucage, S. L. In Current Protocols in Nucleic Acid
Chemistry; Beaucage, S. L., Bergstrom, D. E., Glick, G. D.,
Jones, R. A., Eds.; John Wiley & Sons: New York, NY, 2001;
Chapter 3.
4. Sanghvi, Y. S. In Antisense Research and Applications;
Crooke, S. T., Lebleu, B., Eds.; CRC: Baton Rouge, 1993; p 273.
5. Bajwa, G. S.; Bentrude, W. G. Tetrahedron Lett. 1978, 19,
421.
6. Ogilvie, K. K.; Nemer, M. J. Tetrahedron Lett. 1981, 22,
2631.
Figure 1. 31P NMRof tetramer 8.
7. Hayakawa, Y.; Uchiyama, M.; Nayori, R. Tetrahedron
Lett. 1986, 27, 4191.
8. Hayakawa, Y.; Uchiyama, M.; Nayori, R. Tetrahedron
Lett. 1986, 27, 4195.
9. Chapell, M. D.; Halomb, R. L. Tetrahedron Lett. 1999, 40,
1.
10. (a) Manoharan, M.; Lu, Y.; Casper, M. D.; Just, G. Org.
Lett. 2000, 2, 243. (b) Wada, T.; Mochizuki, A.; Sato, Y.;
Sekine, M. Tetrahedron Lett. 1998, 39, 7123.
11. Kataoka, M.; Hattori, A.; Okino, S.; Hyodo, M.; Asano,
M.; Kawai, R.; Hayakawa, Y. Org. Lett. 2001, 3, 815.
12. (a) Luppattelli, P.; Saladino, R.; Mincione, E. Tetrahedon
Lett. 1993, 34, 6313. (b) Saladino, R.; Bernini, R.; Crestini, C.;
Mincione, E.; Bergamini, A.; Marini, S.; Palamar, A. T. Tet-
rahedron 1995, 51, 7561.
13. Saladino, R.; Crestini, C.; Bernini, R.; Mincione, E.; Cia-
frino, R. Tetrahedron Lett. 1995, 36, 2665.
14. Salunkhe, M. M.; Padiya, K. J.; Mohe, N. Unpublished
result.
15. Sanghvi, Y. S.; Ravikumar, V. T.; Scozzari, A. N.; Cole,
D. L. Pure Appl. Chem. 2001, 73, 175.
integrity of the oligonucleotide was further confirmed
by enzymatic hydrolysis of purified d(CATGG) which
indicated the expected ratio of the natural bases.
The NBS–DMSO oxidation system was further eval-
uated for use in the synthesis of mixed backbone oligo-
nucleotides due to their potential therapeutic
applications.19 A T-tetramer was chosen as a test
sequence to demonstrate the capabilities of NBS–
DMSO. Tetramer 7 containing a terminal P(III) linkage
was synthesized following traditional phosphoramidite
chemistry using Beaucage reagent for thiolation. Oxi-
dation of 7 with the NBS–DMSO system on solid sup-
port using the conditions described in Table 1 provided
8 in excellent yield (Scheme 3). The purity of tetramer 8
was assessed by 31P NMRspectrum ( Fig. 1). The 1:2