Angewandte Chemie International Edition
10.1002/anie.201811023
COMMUNICATION
Considering the chiroptical properties of carbohelicenes, chiral
separation was conducted. The two enantiomers of 4ac were
separated by a chiral high performance liquid chromatography
(2)
a) T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 7763;
b) Y. Hu, X.-Y. Wang, P.-X. Peng, X.-C. Wang, X.-Y. Cao, X. Feng, K.
Müllen, A. Narita, Angew. Chem. Int. Ed. 2017, 56, 3374; Angew. Chem.
2017, 129, 3423; c) M. Ferreira, G. Naulet, H. Gallardo, P. Dechambenoit,
(
HPLC) and their circular dichroism (CD) spectra were recorded
H. Bock, F. Durola, Angew. Chem. Int. Ed. 2017, 56, 3379; Angew.
Chem. 2017, 129, 3428; d) Y. Nakakuki, T. Hirose, H. Sotome, H.
Miyasaka, K. Matsuda, J. Am. Chem. Soc., 2018, 140, 4317.
in toluene (Figure 1a-b). The first portion eluted by chiral HPLC
exhibited a positive Cotton effect at 357 nm in CD spectrum. The
second portion had an opposite sign as the mirror image. On the
basis of the comparison of CD spectra with those of known
(3)
a) F. Teplý, I. G. Stará, I. Starý, A. Kollárovič, D. Šaman, L. Rulíšek, P.
Fiedler, J. Am. Chem. Soc. 2002, 124, 9175; b) D. C. Harrowven, I. L.
Guy, L. Nanson, Angew. Chem. Int. Ed. 2006, 45, 2242; Angew. Chem.
[
14]
[
(
5]helicenes, the absolute configuration of 4ac is determined as
P)-(+)-4ac and (M)-(−)-4ac. The two isomers exhibited almost
the same absorption and fluorescence spectra in CH Cl (Figure
c). The cyclic voltammograms vs. ferrocene/ferrocenium of the
2006, 118, 2300; c) S. K. Collins, A. Grandbois, M. P. Vachon, J. Côté,
Angew. Chem. Int. Ed. 2006, 45, 2923; Angew. Chem. 2006, 118, 2989;
d) K. Tanaka, A. Kamisawa, T. Suda, K. Noguchi, M. Hirano, J. Am.
Chem. Soc. 2007, 129, 12078; e) A. Jančařík, J. Rybáček, K. Cocq, J. V.
Chocholoušová, J. Vacek, R. Pohl, L. Bednárová, P. Fiedler, I. Císařová,;
I. G. Stará, I. Starý, Angew. Chem. Int. Ed. 2013, 52, 9970; Angew.
Chem. 2013, 125, 10154; f) R. K. Mohamed, S. Mondal, J. V. Guerrera,
T. M. Eaton, T. E. Albrecht-Schmitt, M. Shatruk, I. V. Alabugin, Angew.
Chem. Int. Ed. 2016, 55, 12054; Angew. Chem. 2016, 128, 12233.
a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624;
b) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369; c) Y. Segawa,
T. Maekawa, K. Itami, Angew. Chem. Int. Ed. 2015, 54, 66; Angew.
Chem. 2015, 127, 68; d) Y. Yang, J. Lan, J. You, Chem. Rev. 2017, 117,
2
2
1
two isomers showed two reversible oxidation waves around 0.59
V and 1.07 V for (P)-4ac and 0.61 V and 1.11 V for (M)-4ac
(
Figure 1d), indicating that the radicals could be probably formed
upon oxidation.
(4)
(
P)-4ac
(
P)-4ac
(M)-4ac
8787.
(
M)-4ac
(5)
a) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651; b) V. P.
Boyarskiy, D. S. Ryabukhin, N. A. Bokach, A. V. Vasilyev, Chem. Rev.
2016, 116, 5894; c) Y. Yang, K. Li, Y. Cheng, D. Wan, M. Li, J. You,
Chem. Commun. 2016, 52, 2872.
0
2
4
6
8
300 350 400 450 500 550
Wavelength (nm)
Retention time/min
(6)
a) D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, J. Am. Chem. Soc.
2010, 132, 18326; b) S. Mochida, M. Shimizu, K. Hirano, T. Satoh, M.
Miura, Chem. Asian J. 2010, 5, 847; c) F. W. Patureau, T. Besset, N.
Kuhl, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2154; d) K. Muralirajan, K.
Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 4169;
Angew. Chem. 2011, 123, 4255; e) X. Tan, B. Liu, X. Li, B. Li, S. Xu, H.
Song, B. Wang, J. Am. Chem. Soc. 2012, 134, 16163; f) X. Liu, G. Li, F.
Song, J. You, Nat. Commun. 2014, 5, 5030; g) J. Yin, M. Tan, D. Wu, R.
Jiang, C. Li, J. You, Angew. Chem. Int. Ed. 2017, 56, 13094; Angew.
Chem. 2017, 129, 13274; h) J. Yin, F. Zhou, L. Zhu, M. Yang, Y. Lan, J.
You, Chem. Sci. 2018, 9, 5488.
Abs of (P)-4ac
(P)-4ac
(M)-4ac
1
0
0
0
0
0
.0
Abs of (M)-4ac
Em of (P)-4ac
Em of (M)-4ac
.8
.6
.4
.2
.0
3
00
400
500
600
-2
-1
0
1
Wavelength (nm)
Volts vs. ferrocene/ferrocecenium (V)
Figure 1. (a) Chiral HPLC analysis of 4ac, eluted by hexane/dichloromethane =
:1 using CHIRALPAK IF. (b) Circular dichroism spectra in dry toluene. (c)
Absorption and fluorescence spectra in CH Cl (d) Cyclic voltammogram
spectra in CH Cl under N at room temperature.
(7)
a) M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016,
3
138, 12692; b) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K.
2
2
.
Singh, A. Lei, Chem. Rev. 2017, 117, 9016.
2
2
2
(8)
a) Z. Huang, L. Jin, Y. Feng, P. Peng, H. Yi, A. Lei, Angew. Chem. Int.
Ed. 2013, 52, 7151; Angew. Chem. 2013, 125, 7292; b) F. Chen. X.
Huang, X. Li, T. Shen, M. Zou, N. Jiao, Angew. Chem. Int. Ed. 2014, 53,
10495; Angew. Chem. 2014, 126, 10663; c) T. Tomakinian, R. Guillot, C.
Kouklovsky, G. Vincent, Angew. Chem. Int. Ed. 2014, 53, 11881; Angew.
Chem. 2014, 126, 12075; d) K. Li, Q. Wu, J. Lan, J. You, Nat. Commun.
In conclusion, we have described the merging of C–H
activation and radical chemistry to pave an unparalleled road to
poly-substituted [5]-, and [6]carbohelicenes by using easily
available α-acetylnaphthalenes and alkynes as starting materials.
The rapid route to carbohelicenes developed herein has
exemplified the high compatibility of ionic-type and radical-type
transformations.
2015, 6, 8404; e) C. Le, T. Q. Chen, T. Liang, P. Zhang, D. W. C.
MacMillan, Science 2018, 360, 1010.
(9)
Z. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem. Soc. Rev.
2015, 44, 7764.
(
10) a) P. Cotugno, A. Monopoli, F. Ciminale, A. Milella, A. Nacci, Angew.
Chem. Int. Ed. 2014, 53, 13563; Angew. Chem. 2014, 126, 13781; b) S.
Manna, A. P. Antonchick, Angew. Chem. Int. Ed. 2015, 54, 14845;
Angew. Chem. 2015, 127, 15058.
Acknowledgements
(
11) W. G. B. Huysmans, W. A. Waters, J. Chem. Soc. B 1967, 1163.
12) X. Dong, Y. Xu, J. J. Liu, Y. Hu, T. Xiao, L. Zhou, Chem. Eur. J. 2013, 19,
(
This work was supported by the National NSF of China (No.
16928.
2
1772128 and 21432005) and the Fundamental Research Funds
(13) For the discussion of single crystal X-ray structures of 4aa, 4ak and 4ca,
see Part XI in the supporting information. CCDC 1862779 (4aa),
for the Central Universities (2012017yjsy108).
1862780 (4ak), 1862781 (4ca), 1862782 (5al), and 1862783 (6aa)
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
Keywords: carbohelicene • C–H activation • radical approach •
rhodium-catalysis • annulation
(14) Y. Ogawa, M. Toyama, M. Karikomi, K. Seki, K. Haga, T. Uyehara,
(1)
a) Y. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463; b) M. Gingras,
Chem. Soc. Rev. 2013, 42, 968; c) M. Gingras, Chem. Soc. Rev. 2013,
Tetrahedron Lett. 2003, 44, 2167.
42, 1051.
This article is protected by copyright. All rights reserved.