Fumonisin B Series Mycotoxins
J. Agric. Food Chem., Vol. 55, No. 11, 2007 4393
and fumonisins in corn in relation to human esophageal cancer
in Transkei. Phytopathology 1992, 82, 353-357.
(9) Sadler, T. W.; Merrill, A. H.; Stevens, V. L.; Sullards, M. C.;
Wang, E.; Wang, P. Prevention of fumonisin B1-induced neural
tube defects by folic acid. Teratology 2002, 66, 169-176.
(10) Hendricks, K. Fumonisins and neural tube defects in south Texas.
Epidemiology 1999, 10, 198-200.
(11) International Agency for Research on Cancer. Fumonisin B1.
IARC Monographs on the EValuation of Carcinogenic Risks to
Humans, Some Traditional Medicines, Some Mycotoxins, Naph-
thalene and Styrene; IARC: Lyon, France, 2002; Vol. 82, pp
301-366.
(12) Rheeder, J. P.; Marasas, W. F. O.; Vismer, H. F. Production of
fumonisin analogs by Fusarium species. Appl. EnViron. Micro-
biol. 2002, 68, 2101-2105.
retention time as a small peak eluting from the HPLC column
immediately prior to normal FB3. Table 3 shows the results of
the analytical determination of FB3 (3) and 3-epi-FB3 (5) for
16 samples of corn and commercial corn meal. The presence
of the stereoisomer was confirmed by LC-MS-MS analysis and
the presence of the characteristic fragmentation pattern for
fumonisins. Figure 6 shows the total ion chromatogram for a
sample of Transkeian corn, as well as a comparison of the mass
spectra for FB3 (3) and for the peak corresponding to 3-epi-
FB3 (5). The similarity of the spectra and the presence of the
fragment ions corresponding to [M + H - H2O]+ (m/z 688),
[M + H - 2H2O]+ (m/z 670), [M + H - TCA]+ (m/z 530),
[M + H - H2O - TCA]+ (m/z 512), [M + H - 2TCA]+ (m/z
354), and [M + H - H2O - 2TCA]+ (m/z 336) provides
unequivocal identification of the compounds. The level of 3-epi-
FB3 (5) in these samples ranged from 6.7 to 21% of the level
of FB3 and contributed only marginally to the total level of
fumonisins. On the basis of these data and the fact that it also
only occurs at lower levels than FB3 in culture, it can be
concluded that, in general, the influence of 3-epi-FB3 on
fumonisin exposure will be small.
%7Edms/fumongui.html.
(14) World Health Organization. EValuation of Certain Mycotoxins
in Food; WHO Technical Report Series 906; 56th Report of the
Joint FAO/WHO Expert Committee on Food Additives; WHO:
Geneva, Switzerland, 2002.
(15) Sydenham, E. W.; Shephard, G. S.; Thiel, P. G.; Stockenstro¨m,
S.; Snijman, P. W.; van Schalkwyk, D. J. Liquid chromato-
graphic determination of fumonisins B1, B2, and B3 in corn:
AOAC-IUPAC collaborative study. J. AOAC Int. 1996, 79, 688-
696.
(16) Gulavita, N. K.; Scheuer, P. J. Two epimeric aliphatic amino
alcohols from a sponge, Xestospongia sp. J. Org. Chem. 1989,
54, 366-389.
(17) Mori, K.; Matsuda, H. Synthesis of sphingosine relatives. XII.
Synthesis and absolute configuration of the two epimeric aliphatic
amino alcohols [(5E,7E)-2-amino-5,7-tetra-decadien-3-ols] iso-
lated from a sponge, Xestospongia sp. Liebigs Ann. Chem. 1992,
131-137.
The use of an isolated FB3 analytical standard for chromato-
graphic analysis is problematic due to the presence of the two
stereoisomers. Nevertheless, because of their chemical similarity
and similar retention times on a reversed-phase HPLC column,
the assumption of the same chromatographic response factors
for the two isomers would appear to be reasonable and allows
accurate analysis to be performed. The response factor calculated
for the combination of the two isomers in the standard
chromatogram is then applied separately to each isomer peak
in the chromatogram of the sample.
(18) Jime´nez, C.; Crews, P. Novel marine sponge amino acids, 10.
Xestoaminols from Xestospongia sp. J. Nat. Prod. 1990, 53,
978-982.
LITERATURE CITED
(19) Garrido, L.; Zub´ıa, E.; Ortega, M. J.; Naranjo, S.; Salva´, J.
Obscuraminols, new unsaturated amino alcohols from the
tunicate Pseudodistoma obscurum: Structure and absolute con-
figuration. Tetrahedron 2001, 57, 4579-4588.
(1) Bezuidenhout, S. C.; Gelderblom, W. C. A.; Gorst-Allman, C.
P.; Horak, R. M.; Marasas, W. F. O.; Spiteller, G.; Vleggaar, R.
Structure elucidation of the fumonisins, mycotoxins from
Fusarium moniliforme. J. Chem. Soc., Chem. Commun. 1988,
743-745.
(2) Cawood, M. E.; Gelderblom, W. C. A.; Vleggaar, R.; Behrend,
Y.; Thiel, P. G.; Marasas, W. F. O. Isolation of the fumonisin
mycotoxins: A quantitative approach. J. Agric. Food Chem.
1991, 39, 1958-1962.
(3) Shephard, G. S.; Thiel, P. G.; Stockenstro¨m, S.; Sydenham,
E. W. Worldwide survey of fumonisin contamination of
corn and corn-based products. J. AOAC Int. 1996, 79, 671-
687.
(4) Kellerman, T. S.; Marasas, W. F. O.; Thiel, P. G.; Gelderblom,
W. C. A.; Cawood, M.; Coetzer, J. A. W. Leukoencephaloma-
lacia in two horses induced by oral dosing of fumonisin B1.
Onderstepoort J. Vet. Res. 1990, 57, 269-275.
(5) Harrison, L. R.; Colvin, B. M.; Green, J. T.; Newman,
L. E.; Cole, J. R. Pulmonary edema and hydrothorax in
swine produced by fumonisin B1, a toxic metabolite of
Fusarium moniliforme. J. Vet. Diagn. InVest. 1990, 2,
217-221.
(6) Gelderblom, W. C. A.; Kriek, N. P. J.; Marasas, W. F. O.; Thiel,
P. G. Toxicity and carcinogenicity of the Fusarium moniliforme
metabolite, fumonisin B1, in rats. Carcinogenesis 1991, 12,
1247-1251.
(7) Howard, P. C.; Eppley, R. M.; Stack, M. E.; Warbritton, A.;
Voss, K. A.; Lorentzen, R. J.; Kovach, R. M.; Bucci, T. J.
Fumonisin B1 carcinogenicity in a two-year feeding study using
F344 rats and B6C3F1 mice. EnViron. Health Perspect. 2001,
109, 277-282.
(20) Sata, N. U.; Fusetani, N. Amaminols A and B, new bicyclic
amino alcohols from an unidentified tunicate of the family
Polyclinidae. Tetrahedron Lett. 2000, 41, 489-492.
(21) Dale, J. A.; Mosher, H. S. Nuclear magnetic resonance enanti-
omer reagents. Configurational correlations Via nuclear magnetic
resonance chemical shifts of diastereomeric mandelate, O-
methylmandelate, and R-methoxy-R-trifluoromethylphenylacetate
(MTPA) esters. J. Am. Chem. Soc. 1973, 95, 512-519.
(22) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. Correlation of
configuration and 19F chemical shifts of R-methoxy-R-tri-
fluoromethylphenylacetate derivatives. J. Org. Chem. 1973, 38,
2143-2147.
(23) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-field
FT NMR application of Mosher’s method. The absolute con-
figurations of marine terpenoids. J. Am. Chem. Soc. 1991, 113,
4092-4096.
(24) Jares-Erijman, E. A.; Bapat, C. P.; Lithgow-Bertolloni, A.;
Rinehart, K. L.; Sakai, R. Crucigasterins, new polyunsaturated
amino alcohols from the Mediterranean tunicate Pseudodistoma
crucigaster. J. Org. Chem. 1993, 58, 5732-5737.
(25) Kong, F., Faulkner, D. J. Leuettamols A and B, two antimicrobial
lipids from the calcareous sponge Leucetta microraphis. J. Org.
Chem. 1993, 58, 970-971.
(26) Boer, A. Stereochemical studies on the fumonisins, metabolites
of Fusarium moniliforme, M.Sc. Dissertation, University of
Pretoria, 1992.
(27) ApSimon, J. W.; Blackwell, B. A.; Edwards, O. E.; Fruchier,
A. Relative configuration of the C-1 to C-5 fragment of
fumonisin B1. Tetrahedron Lett. 1994, 35, 7703-7706.
(8) Rheeder, J. P.; Marasas, W. F. O.; Thiel, P. G.; Sydenham, E.
W.; Shephard, G. S.; Van Schalkwyk, D. J. Fusarium moniforme