Communication
ChemComm
acetylated histone protein and its superior crosslinking ability over
arylazide functionality. These improvements coupled with the
recent finding that tmdF could be introduced into mammalian
cells23 would accelerate the application of this particular amino
acid for profiling transient interacting partners of the bromo-
domains and other chromatin modifiers.
We thank the University of Pittsburgh, the National Institutes
of Health (R01GM123234) and the National Science Foundation
(MCB-1817692) for financial support; S. Geib for crystal structure
analysis, Dr D. Chakraborty and members of our laboratory for
editing of the manuscript. P. Mannes is supported by an NIH
training grant (T32GM008208).
Conflicts of interest
There are no conflicts to declare.
Fig. 5 Crosslinking of BPTF-W2950tmdF with full-length histone. (A) Scheme
showing the synthesis of H4 carrying site-specific acetylated thialysine (KCac)
using thermal thiol–ene reaction (ref. 22). (B) ESI LC-HRMS spectra of full-
length H4KC8ac. (C) Western blot showing crosslinking of BPTF-W2950tmdF
to H4KC8ac and H4KC12ac (dotted box) using anti-H4 and anti-6xHis anti-
bodies. (D) Crosslinking of hyperacetylated H4 isolated from HEK293T cells
with BPTF mutants as confirmed by H4 antibody.
Notes and references
1 N. D. Pham, R. B. Parker and J. J. Kohler, Curr. Opin. Chem. Biol.,
2013, 17, 90–101.
2 H. Neumann, P. Neumann-Staubitz, A. Witte and D. Summerer,
Curr. Opin. Chem. Biol., 2018, 45, 1–9.
3 T. A. Nguyen, M. Cigler and K. Lang, Angew. Chem., Int. Ed., 2018, 57,
14350–14361.
4 Y. Tian, M. P. Jacinto, Y. Zeng, Z. Yu, J. Qu, W. R. Liu and Q. Lin,
J. Am. Chem. Soc., 2017, 139, 6078–6081.
5 J. Liu, S. Li, N. A. Aslam, F. Zheng, B. Yang, R. Cheng, N. Wang,
S. Rozovsky, P. G. Wang, Q. Wang and L. Wang, J. Am. Chem. Soc.,
2019, 141, 9458–9462.
6 B. Sudhamalla, D. Dey, M. Breski, T. Nguyen and K. Islam, Chem.
Sci., 2017, 8, 4250–4256.
7 J. P. Lambert, et al., Mol. Cell, 2019, 73(621–638), e617.
8 E. M. Tippmann, W. Liu, D. Summerer, A. V. Mack and P. G. Schultz,
ChemBioChem, 2007, 8, 2210–2214.
9 T. S. Young, I. Ahmad, J. A. Yin and P. G. Schultz, J. Mol. Biol., 2010,
395, 361–374.
10 A. Chatterjee, S. B. Sun, J. L. Furman, H. Xiao and P. G. Schultz,
Biochemistry, 2013, 52, 1828–1837.
ene reaction to produce acetylated thialysine and synthesized full-
length H4Kc8ac and H4Kc12ac proteins (Fig. 5A, B and Fig. S9,
ESI†).22 The synthetic full-length H4 proteins were allowed to bind
with W2950tmdF mutant followed by UV-irradiation. The cross-
linked species were separated in SDS-PAGE and visualized using
anti-H4 and anti-6xHis antibodies. We observed chemiluminescent
signals at a molecular weight higher than that of the individual
proteins (H4 and BPTF) when irradiated with UV light, confirming
successful crosslinking (Fig. 5C). No crosslinking was observed
in absence of photo-irradiation or when the individual proteins 11 M. Nassal, J. Am. Chem. Soc., 1984, 106, 7540–7545.
12 G. Baldini, B. Martoglio, A. Schachenmann, C. Zugliani and
were exposed to UV light. Finally, we extracted endogenous hyper-
J. Brunner, Biochemistry, 1988, 27, 7951–7959.
acetylated histones from HEK39T cells and subjected them to
13 K. Masuda, A. Koizumi, T. Misaka, Y. Hatanaka, K. Abe, T. Tanaka,
crosslinking with the BPTF analogues. Western blotting with anti-
H4 antibody indeed showed crosslinking, albeit to a lesser extent,
for both the mutants with W2950tmdF having marginally increased
M. Ishiguro and M. Hashimoto, Bioorg. Med. Chem. Lett., 2010, 20,
1081–1083.
14 H. Nakashima, M. Hashimoto, Y. Sadakane, T. Tomohiro and
Y. Hatanaka, J. Am. Chem. Soc., 2006, 128, 15092–15093.
crosslinked signal compared to the W2950AzF variant (Fig. 5D). 15 D. D. Young, T. S. Young, M. Jahnz, I. Ahmad, G. Spraggon and P. G.
Schultz, Biochemistry, 2011, 50, 1894–1900.
16 S. J. Miyake-Stoner, C. A. Refakis, J. T. Hammill, H. Lusic,
Collectively, these results demonstrate that the BPTF analogue with
site-specifically introduced PCAA 3 is capable of interacting and
J. L. Hazen, A. Deiters and R. A. Mehl, Biochemistry, 2010, 49,
establishing covalent bond with full-length histone H4 upon
irradiation by UV light.
1667–1677.
17 A. L. Stokes, S. J. Miyake-Stoner, J. C. Peeler, D. P. Nguyen,
R. P. Hammer and R. A. Mehl, Mol. BioSyst., 2009, 5, 1032–1038.
18 J. W. Chin, S. W. Santoro, A. B. Martin, D. S. King, L. Wang and
P. G. Schultz, J. Am. Chem. Soc., 2002, 124, 9026–9027.
19 J. W. Chin, A. B. Martin, D. S. King, L. Wang and P. G. Schultz, Proc.
Natl. Acad. Sci. U. S. A., 2002, 99, 11020–11024.
20 A. J. Ruthenburg, H. Li, T. A. Milne, S. Dewell, R. K. McGinty,
M. Yuen, B. Ueberheide, Y. Dou, T. W. Muir, D. J. Patel and
C. D. Allis, Cell, 2011, 145, 692–706.
In this work, we established tmdF as an excellent photo-
sensitive amino acid which has remained largely underutilized in
‘interactome’ profiling. We repurposed a set of ‘privileged’ synthe-
tases to incorporate tmdF into bromodomain-containing proteins.
This approach to expand substrate polyspecificity of an already
evolved synthetase has the benefit of accessing engineered transla-
tional machinery without having to perform additional steps
21 G. T. Perell, N. K. Mishra, B. Sudhamalla, P. D. Ycas, K. Islam and
W. C. K. Pomerantz, Biochemistry, 2017, 56, 4607–4615.
involved in directed evolution. We also improved the existing 22 A. Dhall, S. Wei, B. Fierz, C. L. Woodcock, T. H. Lee and
C. Chatterjee, J. Biol. Chem., 2014, 289, 33827–33837.
23 N. Hino, M. Oyama, A. Sato, T. Mukai, F. Iraha, A. Hayashi,
synthetic strategy towards tmdF by modifying a few critical steps
and reducing the number of protection-deprotection maneuvers.
H. Kozuka-Hata, T. Yamamoto, S. Yokoyama and K. Sakamoto,
Finally, we demonstrated the utility of tmdF group in crosslinking
J. Mol. Biol., 2011, 406, 343–353.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020