3
species by anion exchange was conducted in the presence of
18 J. P. Collman, R. Boulatov, J. Am. Chem. Soc. 2000, 122, 11812.
31
1
0
1
9
2 4
Preliminary P NMR analysis of the mixture of Rh (OAc) and
Duanphos and Sc(OTf)
3
.
However, no reaction occurred,
dppp failed to identify the structure of active species because of
very low concentration of active species. Probably, there were
several kinds of Rh-P species and intensity of each species was
too low to detect. See the Supporting Information for details.
which indicates that an active Rh species in our Rh(II)/Sc
1
9
system may not be a simple monomeric Rh(I) species.
In conclusion, a new cooperative catalyst system
consisting of a Rh(II) salt and a Lewis acid for ketone
hydroacylation was developed, and high turnover number (up
to ca. 400) compared with that of reported reactions was
3
achieved. The corresponding Rh(I)/Sc(OTf) system did not
work well under such low catalyst loading and thus the use of
a Rh(II) salt was essential. The Rh(II)/Sc system was also
applicable for hydroacylation of olefins, and an
enantioselective reaction was possible. The origin of the high
activity of the Rh(II) catalyst and the role of Sc(OTf)
under investigation in our laboratory.
3
are
This work was partially supported by a Grant-in-Aid for
Science Research from the Japan Society for the Promotion of
Science (JSPS), The University of Tokyo, MEXT, Japan, and
the Japan Science and Technology Agency (JST). We also
thank Mr. Elias Ken Selmi Higashi (a short-term visiting
student from University Grenoble Alpes, France) for his
technical support.
References and Notes
1
a) H. Yamamoto, Lewis Acids in Organic Synthesis, Wiley-VCH,
Weinheim, 2000. b) R. H. Qiu, Y. Chen, S. F. Yin, X. H. Xu, C. T.
Au, RSC Adv. 2012, 2, 10774. c) A. Corma, H. Garcia, Chem. Rev.
2
2
003, 103, 4307. d) S. Kobayashi, K. Manabe, Acc. Chem. Res.
002, 35, 209.
2
a) S. M. Inamdar, V. S. Shinde, N. T. Patil, Org. Biomol. Chem.
015, 13, 8116. b) Y. Nakao, Bull. Chem. Soc. Jpn. 2012, 85, 731.
2
c) A. E. Allen, D. W. C. MacMillan, Chem. Sci. 2012, 3, 633. d)
C. Y. Wang, Z. F. Xi, Chem. Soc. Rev. 2007, 36, 1395.
A. Gualandi, L. Mengozzi, C. M. Wilson, P. G. Cozzi, Chem.
Asian J. 2014, 9, 984.
3
4
5
6
7
G. C. Y. Choo, H. Miyamura, S. Kobayashi, Chem. Sci. 2015, 6,
1
719.
T. Yasukawa, Y. Saito, H. Miyamura, S. Kobayashi, Angew.
Chem., Int. Ed. 2016, 55, 8058.
K. Sakai, J. Ide, O. Oda, N. Nakamura, Tetrahedron Lett. 1972,
1
3, 1287.
a) L. Yang, H. M. Huang, Chem. Rev. 2015, 115, 3468. b) M. C.
Willis, Chem. Rev. 2010, 110, 725. c) M. A. Garralda, Dalton
Trans. 2009, 3635.
8
9
R. Karmakar, P. Pahari, D. Mal, Chem. Rev. 2014, 114, 6213.
D. H. T. Phan, B. Kim, V. M. Dong, J. Am. Chem. Soc. 2009, 131,
1
5608.
1
1
0
1
See the Supporting Information for details.
S. Kobayashi, S. Nagayama, T. Busujima, J. Am. Chem. Soc.
1
998, 120, 8287.
1
2
We also compared those two systems in the reaction using chiral
ligand and more clear reactivity difference was observed. See the
Supporting Information for details.
1
1
3
4
M. M. Coulter, P. K. Dornan, V. M. Dong, J. Am. Chem. Soc.
2
009, 131, 6932.
a) D. C. Gerbino, D. Augner, N. Slavov, H.-G. Schmalz, Org. Lett.
012, 14, 2338. b) S. Omura, T. Fukuyama, Y. Murakami, H.
2
Okamoto, I. Ryu, Chem. Commun. 2009, 6741. c) S. Tsunetake,
N. Tetsuo, O. Makoto, Chem. Lett. 2006, 35, 824. d) A. Chan, K.
A. Scheidt, J. Am. Chem. Soc. 2006, 128, 4558.
1
5
Z. Shen, P. K. Dornan, H. A. Khan, T. K. Woo, V. M. Dong, J.
Am. Chem. Soc. 2009, 131, 1077.
1
1
6
7
S. Shinoda, T. Kojima, Y. Saito, J. Mol. Catal. 1983, 18, 99.
a) A. F. Trindade, V. André, M. T. Duarte, L. F. Veiros, P. M. P.
Gois, C. A. M. Afonso, Tetrahedron 2010, 66, 8494. b) A. F.
Trindade, P. M. P. Gois, L. F. Veiros, V. André, M. T. Duarte, C.
A. M. Afonso, S. Caddick, F. G. N. Cloke, J. Org. Chem. 2008,
7
3, 4076.