3716
J.-L. Vasse et al. / Tetrahedron Letters 42 (2001) 3713–3716
J.-L.; Levacher, V.; Dupas, G.; Queguiner, G.; Bour-
S
O
guignon, J. Tetrahedron, in press.
-
O
ClO4
4. Borsche modification of the Friedlander procedure pre-
vents the formation of by-products due to autocondensa-
tion reactions, see: (a) Borsche, W.; Ried, W. Liebigs
Ann. Chem. 1943, 554, 269; (b) Borsche, W.; Barthen-
heier, J. Liebigs Ann. Chem. 1941, 548, 50.
Mg2+
O
-
ClO4
Hsyn
O
H
N
Et
N
H
5. Box, V. G. S.; Marinovic, N.; Yiannikouros, G. P. Hete-
rocycles 1991, 32, 245.
6. (a) Mamouni, A.; Da¨ıch, A.; Decroix, B. J. Heterocyclic
Chem. 1996, 33, 1251; (b) Da¨ıch, A.; Decroix, B. J.
Heterocyclic Chem. 1996, 33, 873.
7. Porter, H. K. The Zinin reduction of nitroarenes; Org.
React. 1973, 20, 455–481.
Figure 5. Proposed ternary complex involved in the reduction
of methyl benzoyformate to account for the formation of
(S)-methyl mandelate.
8. Blankenhorm, G.; Moore, E. G. J. Am. Chem. Soc. 1980,
102, 1092.
Cꢀ3ꢀCꢁO bond. As previously proposed in the litera-
ture,2a the sense of the stereoselectivity observed may be
tentatively explained by the establishment of a ternary
complex model/Mg2+/substrate via the complexation of
the CꢁO lactam with magnesium ion to promote the
stereoselective transfer of the syn oriented hydrogen
(Fig. 5).
9. Spectral data 1H NMR (CDCl3, 200 MHz). Compound
2: l 0.84 (3H, t, J=7.0 Hz), 1.92–2.42 (4H, m), 2.78–2.95
(2H, m), 3.03 (3H, s), 3.32 (1H, six, J=7.0 Hz), 3.58 (1H,
d, J =18.0 Hz), 3.82 (1H, six, J=7.0 Hz), 3.86 (3H, s),
3.90 (3H, s), 4.35 (1H, d, J=18.0 Hz), 4.67 (1H, dd,
J=7.0 Hz, J=3.8 Hz), 6.55 (1H, s), 6.68 (1H, s), 7.12–
7.22 (3H, m). Compound 6: l 1.04 (3H, t, J=7.0 Hz),
2.08 (2H, m), 2.35 (2H, m), 2.86–3.03 (2H, m), 3.57 (1H,
quint, J=7.0 Hz,) 3.84 (1H, quint, J=7.0 Hz), 4.07 (3H,
s), 4.21 (3H, s), 4.41 (3H, s), 4.93 (1H, m), 7.36 (1H, s),
7.37–7.44 (4H, m), 7.61 (1H, s), 9.10 (1H, s). Compound
5: l 1.07 (3H, t, J=7.0 Hz), 1.90–2.15 (3H, m), 2.36 (1H,
m), 2.70–2.82 (1H, m), 2.92–3.05 (1H, dt, J=17.0, 3.5
Hz), 3.55 (1H, six, J=7.0 Hz), 4.00 (1H, six, J=7.0 Hz),
4.02 (3H, s), 4.04 (3H, s), 4.86 (1H, m), 7.13 (1H, s), 7.20
(1H, d, J=7.5 Hz), 7.38 (1H, t, J=7.5 Hz), 7.96 (1H, d,
J=7.5 Hz), 8.62 (1H, s).
In contrast to previous models reported in literature,
absence of chirality at C-4 does not throw discredit on
the role played by this conformational effect in the
stereochemical outcome of the reduction. This configu-
rational control process of atropisomeric lactams by
means of a second chirality element on the lactam
moiety opens up interesting perspectives to design new
axially chiral NADH models and to gain further insight
into the role of the out-of plane orientation of the
carbonyl amide in the coenzyme itself.
10. Molecular mechanics (MM2) and MOPAC (PM3) pro-
gram led to the same conformation.
11. Procedure for the reduction of methyl benzoylformate: In a
flask, flushed with argon, were introduced model (aR,S)-
2 (405 mg, 1 mmol), acetonitrile (3 mL), methyl benzoyl-
formate (142 mL, 1 mmol) and magnesium perchlorate
(220 mg, 1 mmol). The resulting solution was stirred at
room temperature for 24 h in the dark. After addition of
water (10 mL), the organic solvent was evaporated under
reduced pressure and the resulting aqueous phase was
extracted with CH2Cl2 (3×10 mL). After drying (MgSO4)
and evaporation of the solvent, the residue was chro-
matographed on silica gel (eluent Et2O/cyclohexane:2/1).
Yield: 89%. Enantiomeric excesses were determined by
HPLC analysis using a Chiracel OD column (250×4.6
mm, 10 mm). Chromatographic conditions: injection: 20
mL (0.5 mg of methyl mandelate in 10 mL of hexane).
Eluent: hexane/2-propanol: 90/10. Flow rate: 1 mL/min.
Pressure: 300 psi. Temperature: 22°C. UV detection: u=
235 nm. Retention time: 9.2 min [(S)-enantiomer] and
14.8 min [(R)-enantiomer]. Enantiomeric excess: 92% (S).
References
1. (a) Ecklund, H.; Samama, J. P.; Jones, T. A. Biochem-
istry 1984, 23, 5982; (b) Skarzynski, T.; Moody, P. C. E.;
Wonacott, A. J. J. Mol. Biol. 1987, 193, 171; (c)
8
Almarsson, O.; Bruice, T. C. J. Am. Chem. Soc. 1993,
115, 2125–2138; (d) Wu, Y.-D.; Houk, K. N. J. Org.
Chem. 1993, 58, 2043–2045.
2. (a) De Kok, P. M. T.; Bastiaansen, L. A. M.; van Lier, P.
M.; Vekemans, J. A. J. M.; Buck, H. M. J. Org. Chem.
1989, 54, 1313–1320; (b) Mikita, Y.; Hayashi, K.;
.
Mizukami, K.; Matsumoto, S.; Yano, S.; Yamazaki, N.;
Ohno, A. Tetrahedron Lett. 2000, 41, 1035–1038; (c)
Ohno, A.; Kashiwagi, M.; Ishihara, Y. Tetrahedron 1986,
42, 961–973.
3. (a) Be´dat, J.; Levacher, V.; Dupas, G.; Queguiner, G.;
Bourguignon, J. Chem. Lett. 1996, 359–360; (b) Levacher,
V.; Dupas, G.; Queguiner, G.; Bourguignon, J. Trends
Heterocyclic Chem. 1995, 4, 293–302; (c) Vitry, C.; Vasse,