P(1)–P(2)–Fe(2)] and 33.9° [C(1)–P(1)–P(2)–C(4)]. The
P(1)–P(2) bond length amounts to 2.2516(10) Å and is thus
somewhat lengthened as a result of the spatially demanding
substitution pattern. The intracyclic P–C bond lengths of 1.793
to 1.797 Å, as well as the carbon–carbon double bond length of
(400 MHz, CDCl
s, 6 H, C(CH Et], 1.80 (q, 4 H, CH
.67–7.73 (m, 4 H, o-Ph); d (100 MHz, CDCl
Et], 26.21 [s, C(CH Et], 34.24 (d, JC,P 10.4,
), 38.28 [d, JC,P 14.5, C(CH Et], 126.32 (d, JC,P 20.0, C-2/C-
3
) 0.90 (t, 6 H, CH
2
CH
3
), 1.42 [s, 6 H, C(CH
3 2
) Et], 1.45
[
7
CH
CH
3
)
2
2
CH
3
), 7.34–7.46 (m, 6 H, m/p-Ph),
4
C
3
) 8.79 (d, JC,P 8.8,
3
2
CH
3
), 26.00 [s, C(CH
3
)
2
3 2
)
2
1
2
CH
3
3 2
)
2
3
2
J
A), 128.93 (s, m-Ph), 129.87 (pseudo t, JC,P + JC,P 7.2, i-Ph), 130.38 (d,
1
.317 Å, are of the expected sizes for a complexed 1H-
3
5
1
2
C,P 6.4, o-Ph), 130.54 (d, JC,P 3.2, p-Ph), 141.61 (pseudo t, JC,P + JC,P
9c
phosphirene. Similary, the C–P–C bond angles of 43.05(11)
2
1
2.0, C-3/C-3A), 213.74 [d, JC,P 4.8, Fe(CO)
[M ], 143 (100) [C11 ]. (Calc. for C32H28Fe P O : C, 55.02; H, 4.35.
Found: C, 53.95; H, 4.10%).
¶ Crystal data for 8a: C32 28Fe
space group P2
b = 99.86(3)°, V = 3414.7(12) Å , Z = 4, D
4
]; m/z (EI, 70 eV) 742 (0.04)
and 43.11(11)° are comparable with those of other
+
H
11
+
2 2 8
9
1H-phosphirenes.
2 8 2
O P
, M = 714.18 g mol21, monoclinic,
We thank the Landesregierung von Rheinland-Pfalz for a
graduate grant (to J. S.) and the Fonds der Chemischen Industrie
for generous financial support.
H
1
/n, a = 10.102(2), b = 18.273(4), c = 18.775(4) Å,
3
23
c
= 1.389 Mg m , m = 0.989
2
1
3
mm , F(000) = 1464. Crystal dimensions 0.35 3 0.20 3 0.15 mm ,
2
6734 reflections collected, 6321 independent reflections (Rint = 0.0382),
511 reflections with I > 2s(I), goodness-of-fit on F2 = 1.205, R [I >
Notes and References
4
†
‡
E-mail: regitz@rhrk.uni-kl.de
Selected data for 7a (only values for the major diastereomer are given):
2 2
2s(I)] = 0.0370, wR = 0.0896; R (all data) = 0.0534, wR = 0.0945;
2
3
maximum residual density 0.420 e Å . Data were collected on a STOE
Imaging Plate Diffraction System at room temperature with Mo-Ka
radiation (l = 0.71073 Å). The structure was solved with SHELXS-86 [ref.
10(a)] and refined with SHELXL-93 [ref. 10(b)]. CCDC 182/787.
1
mp 97–99 °C; d
P
(81 MHz, CDCl
(200 MHz, CDCl
.40–7.51 (m, 6 H, m/p-Ph), 7.57–7.65 (m, 4 H, o-Ph); d
9.22 [d, JC,P 1.7, C(CH ) ], 29.53 [s, C(CH ) ], 33.86 [dd, JC,P 6.4, JC,P
3 3 3 3
.0, C(CH
3
) 288.1 (d, JP,P 427.3, P-1), 2134.2 (d,
) 1.44 [br s, 18 H, C(CH ],
3
(50 MHz, CDCl )
1
J
P,P 427.3 P-2); d
H
3
3 3
)
7
2
3
1
C
3
2
3
2
1
3
)
3
1
], 34.24 [d, JC,P 6.8, C(CH
3
)
3
], 120.33 (d, JC,P 50.8, C-5),
2
24.80 (dd, JC,P 22.0, JC,P 4.2, C-3), 127.30 (d, JC,P 7.6, Ph), 128.62 (s,
1 Part 128 of the series of papers on Organophosphorus Compounds. For
part 127, see: T. W. Mackewitz and M. Regitz, Synthesis, 1998, in the
press.
2 O. J. Scherer and M. Regitz, in Multiple Bonds and Low Coordination
in Phosphorus Chemistry, ed. M. Regitz and O. J. Scherer, Thieme,
Stuttgart, 1990, p. 1.
3 G. M a¨ rkl, in Multiple Bonds and Low Coordination in Phosphorus
Chemistry, ed. M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990,
p. 220.
4 J. Fink, W. R o¨ sch, U.-J. Vogelbacher and M. Regitz, Angew. Chem.,
1986, 98, 265; Angew. Chem., Int. Ed. Engl., 1986, 25, 280.
5 K. Blatter, W. R o¨ sch, U.-J. Vogelbacher, J. Fink and M. Regitz, Angew.
Chem., 1987, 99, 67; Angew. Chem., Int. Ed. Engl., 1987, 26, 85.
6 P. Binger, S. Leininger, J. Stannek, B. Gaber, R. Mynott, J. Bruckmann
and C. Kr u¨ ger, Angew. Chem., 1995, 107, 2411; Angew. Chem., Int. Ed.
Engl., 1995, 34, 2227
Ph), 128.87 (s, Ph), 129.73 (d, JC,P 5.1, Ph), 130.41 (d, JC,P 4.2, Ph), 131.33
s, Ph), 138.50 (d, JC,P 57.7, C-6), 140.51 (dd, JC,P 27.1, 2JC,P 5.1, C-4),
1
1
(
2
+
2
13.94 [d, JC,P 19.5, Fe(CO)
4
]; m/z (EI, 70 eV) 546 (8) [M ], 276 (100)
28FeP : C, 61.56; H, 5.17. Found:
+
[M 2 4CO 2 C12
H14] (Calc. for C28
H
2 4
O
+
C, 60.90; H, 5.07%) (HR-MS: calc. for M : 546.0813. Found: 546.0813).
1
1
For 7b: d
P
(81 MHz, CDCl
(200 MHz, CDCl
t, 3 H, JH,H 7.0, CH CH ), 1.42 [s, 3 H, C(CH
.46 [s, 3 H, C(CH ], 1.47 [s, 3 H, C(CH
CH CH ), 7.37–7.53 (m, 6 H, Ph), 7.57–7.77 (m, 4 H, Ph); d
CDCl ) 8.67 (d, JC,P 6.3, CH
3
) 290.6 (d, JP,P 427.6, P-1), 2132.2 (d, JP,P
3
427.6, P-2); d
H
3
) 0.96 (t, 3 H, JH,H 7.6, CH
], 1.43 [s, 3 H, C(CH
], 1.63–1.92 (m, 4 H,
2
CH
3
), 1.12
3
(
1
2
3
3
)
2
3 2
) ],
3
)
2
3
)
2
2
3
C
(100 MHz,
4
4
3
2
CH
3
), 9.13 (d, JC,P 4.5, CH
2
CH
3
), 25.66 [s,
3
C(CH
C(CH
C(CH
3
3
3
)
)
)
2
2
2
], 26.28 [d,
], 34.36 (d, 3JC,P 5.4, CH
Et], 37.65 [d, JC,P 5.4, C(CH
J
C,P 5.4, C(CH
3
)
2
], 26.45 [s, C(CH
), 34.39 (s, CH CH
3
3 2
) ], 26.88 [s,
2
CH
3
2
1
), 37.01 [s,
Et], 120.89 (d, JC,P 51.2, C-5),
2
3
)
2
1
3
3
125.12 (d, JC,P 22.4, C-3), 127.03 (d, JC,P 8.3, o-Ph), 127.16 (d, JC,P 7.2,
2
o-Ph), 128.32 (s, Ph), 128.58 (s, Ph), 129.41 (d, JC,P 16.2, i-Ph), 129.48 (d,
7 D. B o¨ hm, F. Knoch, S. Kummer, U. Schmidt and U. Zenneck, Angew.
Chem., 1995, 107, 251.
2
1
J
C,P 14.4, i-Ph), 130.12 (s, Ph), 131.18 (s, Ph), 138.25 (d, JC,P 57.5, C-6),
1
2
2
1
41.38 (dd, JC,P 28.3, JC,P 4.0, C-4), 213.73 [d, JC,P 18.0, Fe(CO)
4
]; m/z
8 O. Wagner, M. Ehle and M. Regitz, Angew. Chem., 1989, 101, 227;
Angew. Chem., Int. Ed. Engl., 1989, 28, 225; O. Wagner, M. Ehle,
M. Birkel, J. Hoffmann and M. Regitz, Chem. Ber., 1991, 124, 1207.
9 (a) F. Mathey and M. Regitz, in Comprehensive Heterocyclic Chemistry
II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon,
Oxford, 1996, p. 277; (b) H. Memmesheimer and M. Regitz, Rev.
Heteroatom Chem., 1994, 10, 61; (c) F. Mathey, Chem. Rev., 1990, 90,
997.
+
+
+
(EI, 70 eV): 574 (1) [M ], 143 (100) [C11H11 ] (HR-MS: calc. for M :
5
§
74.1135. Found 574.1130).
Selected data for 8a (only values for the major diastereomer are given):
mp 135 °C (decomp.); d
CDCl ) 1.52 [s, 18 H, C(CH
H, o-Ph); d (50 MHz, CDCl
C(CH
P
(81 MHz, CDCl
3
) 269.3 (s); d
H
(200 MHz,
3
3
)
3
], 7.41–7.54 (m, 6 H, m/p-Ph), 7.55–7.61 (m,
3
4
4
C
3
) 29.27 [pseudo t,
J
C,P
+
J
C,P 4.2,
)
+
3
4
], 34.82 [pseudo t, JC,P + 3JC,P 3.4, C(CH
J
2
3
)
J
3
], 126.07 (pseudo t,
3
3
1
C,P + 2
J
C,P
C,P 3.4, o-Ph), 128.52 (pseudo t,
J
C,P 15.2, C-2/C-2A),
10 (a) G. M. Sheldrick, SHELXS-86, a program for the solution of crystal
structures, G o¨ ttingen, Germany 1986; (b) G. M. Sheldrick, SHELXL-
93, a program for structure refinement, G o¨ ttingen, Germany 1993.
2
3
5
128.93 (s, m-Ph), 130.38 (pseudo t, JC,P + JC,P 5.9, i-Ph), 130.55 (d, JC,P
1
2
1
.7, p-Ph), 142.20 (pseudo t, JC,P + JC,P 22.0, C-3/C-3A), 213.11 [pseudo
2
3
+
t, JC,P + JC,P 17.0, Fe(CO)
4
]; m/z (EI, 70 eV): 714 (0.02) [M ], 332 (100)
14] (Calc. for C32 28Fe : C, 53.82; H, 3.95.
Found: C, 53.12; H, 4.20%). For 8b: d (81 MHz, CDCl ) 270.5 (s); d
+
[M
2 8CO 2 C12
H
H
2 2 8
P O
P
3
H
Received in Liverpool, UK, 22nd December 1997; 7/09127C
868
Chem. Commun., 1998