C O M M U N I C A T I O N S
Table 1. Synthesis and HPLC Profile of R-Modified NDP
Moreover, opposite stereospecificity toward ADPRB was observed
for CK (Sp preferred) and PK (Rp preferred), and the preferred
isomer bound more tightly than ADP.
Analogues
HPLC conditionb tR (min) [area %]
In summary, we have developed an efficient and convenient
protocol to synthesize R-P-modified NDP analogues that are
otherwise difficult to obtain. The absolute configurations of
P-diastereomers were confirmed by analysis of their 1H NMR.
Affinity studies revealed that the NDPRB is potentially useful in
antiviral research. This protocol guarantees the availability of these
biologically important compounds for further study.
compound
yielda
MeOH %
Rp isomer
Sp isomer
dADPRB
dGDPRB
dCDPRB
dTDPRB
ADPRB
GDPRB
CDPRB
UDPRB
ADPRS
ADPRSe
7a
7b
7c
7d
7e
7f
7g
7h
7i
22
32
30
31
28
26
29
30
30
19
9
9
6
6
8
7
5
8
9
8
5.58 [45.2]
10.69 [49.3]
10.41 [48.0]
6.72 [48.9]
8.53 [50.5]
10.73 [51.5]
10.10 [50.4]
6.57 [59.9]
11.11 [48.8]
10.34 [51.1]
11.97 [54.8]
13.29 [50.7]
17.48 [52.0]
9.02 [51.1]
17.24 [49.5]
18.38 [48.5]
13.62 [49.6]
10.19 [40.1]
7.09 [51.2]
5.47 [48.9]
Acknowledgment. Acknowledgment is made to the NIH grants
(R01-AI-52061 and 2R01-GM-57693) to B.R.S.
7j
Supporting Information Available: Experimental procedures and
spectroscopic data. This material is available free of charge via the
a Yield calculated in percentage by UV. b Waters Delta-Pak C18, 15 µm,
100 Å, 3.9 × 300 mm eluted at 1 mL/min with isocratic condition of 100
mM TEAB (pH ) 8.0) and MeOH.
Table 2. Chemical Shifts of R-Modified ADP Analogues in D2Oa
References
compound
H8
H2
H1
′
H2
′
H3
′
H4
′
H5
′
H5′′
(1) For reviews, see: (a) De Clercq, E. J. Clin. Virol. 2004, 30, 115. (b) De
Clercq, E. Nat. ReV. Drug DiscoVery 2002, 1, 13. (c) Wagner, C. R.;
Iyer, V. V.; McIntee, E. J. Med. Res. ReV. 2000, 20, 417. (d) Meier, C.
Synlett 1998, 233.
(2) For reviews, see: (a) Eckstein, F. Biochimie 2002, 84, 841. (b) Eckstein,
F. Annu. ReV. Biochem. 1985, 54, 367.
(3) For reviews, see: (a) Shaw, B. R.; Dobrikov, M.; Wang, X.; Wan, J.;
He, K. Z.; Lin, J. L.; Li, P.; Rait, V.; Sergueeva, Z. A.; Sergueev, D.
Ann. N.Y. Acad. Sci. 2003, 1002, 12. (b) Summers, J. S.; Shaw, B. R.
Curr. Med. Chem. 2001, 8, 1147. (c) Shaw, B. R.; Sergueev, D.; He, K.
Z.; Porter, K.; Summers, J.; Sergueeva, Z.; Rait, V. Methods Enzymol.
2000, 313, 226.
7e, ADPRB
I-Rp
II-Sp
7i, ADPRS
I-Sp
II-Rp
7j, ADPRSe
I-Sp
8.45 8.08 5.99 4.60 4.47 4.23 4.11 4.00
8.43 8.08 5.99 4.62 4.39 4.24 4.11 4.00
8.51 8.03 5.94 4.61 4.47 4.22 4.15 4.05
8.44 8.03 5.94 4.61 4.47 4.22 4.15 4.05
8.57 8.10 5.99 4.66 4.49 4.26 4.19 4.09
8.48 8.09 5.99 4.64 4.47 4.27 4.16 4.11
II-Rp
(4) (a) Dobrikov, M. I.; Sergueeva, Z. A.; Shaw, B. R. Nucleosides Nucleotides
Nucleic Acids 2003, 22, 1651. (b) Dobrikov, M. I.; Grady, K. M.; Shaw,
B. R. Nucleosides Nucleotides Nucleic Acids 2003, 22, 275. (c) Li, P.;
Shaw, B. R. J. Org. Chem. 2005, 70, 2171. (d) Li, P.; Dobrikov, M.; Liu,
H. Y.; Shaw, B. R. Org. Lett. 2003, 5, 2401. (e) Li, P.; Shaw, B. R. Org.
Lett. 2002, 4, 2009.
1
a Proton assignment based on H-1H COSY.
(5) (a) Deval, J.; Selmi, B.; Boretto, J.; Egloff, M. P.; Guerreiro, C.; Sarfati,
S.; Canard, B. J. Biol. Chem. 2002, 277, 42097. (b) Selmi, B.; Boretto,
J.; Sarfati, S. R.; Guerreiro, C.; Canard, B. J. Biol. Chem. 2001, 276,
48466. (c) Meyer, P.; Schneider, B.; Sarfati, S.; Deville-Bonne, D.;
Guerreiro, C.; Boretto, J.; Janin, J.; Veron, M.; Canard, B. EMBO J. 2000,
19, 3520. (d) Matamoros, T.; Deval, J.; Guerreiro, C.; Mulard, L.; Canard,
B.; Menendez-Arias, L. J. Mol. Biol. 2005, 349, 451. (e) Alvarez, K.;
Deval, J.; Barral, K.; De Michelis, C.; Canard, B. AntiViral Res. 2005,
65, A49. (f) Deval, J.; Alvarez, K.; Selmi, B.; Bermond, M.; Boretto, J.;
Guerreiro, C.; Mulard, L.; Canard, B. J. Biol. Chem. 2005, 280, 3838.
(6) (a) Li, P.; Shaw, B. R. J. Org. Chem. 2004, 69, 7051. (b) Lin, J. L.; He,
K. Z.; Shaw, B. R. HelV. Chim. Acta 2000, 83, 1392.
(7) Burgess, K.; Cook, D. Chem. ReV. 2000, 100, 2047.
(8) (a) Ludwig, J.; Eckstein, F. J. Org. Chem. 1989, 54, 631. (b) Carrasco,
N.; Huang, Z. J. Am. Chem. Soc. 2004, 126, 448. (c) He, K. H.; Hasan,
A.; Krzyzanowska, B.; Shaw, B. R. J. Org. Chem. 1998, 63, 5769. (d)
Krzyzanowska, B. K.; He, K. Z.; Hasan, A.; Shaw, B. R. Tetrahedron
1998, 54, 5119.
Figure 1. Conformation of P-diastereomers of ADP analogues.
of isomer II is more shielded than that of isomer I due to the
influence of the vicinal X group (Figure 1) at the R-P position.14
Calculation by Fischer indicated that the PR is much further away
from H8 in isomer I than in isomer II (Figure 1).14 Thus, the ∆δ
between H8 of isomers I and II is attributed to a difference in the
proximity of H8 to the negative charge on X. Because the distance
between X and H8 decreases as the P-X bond length increases
for P-B (1.91 Å) < P-S (1.96 Å) < P-Se (2.24 Å),15 the ∆δ for
H8 between two diastereomers increases accordingly with 7e < 7i
< 7j. Moreover, the larger ∆δ of H3′ in 7e, but not in 7i and 7j,
may be attributed to the existence of the B-H bond (1.25 Å) in
addition to the P-B bond, which results in the close proximity of
the BH3 group and H3′ in Sp-ADPRB.
(9) Ludwig, J.; Eckstein, F. J. Org. Chem. 1991, 56, 1777.
(10) Wang, G. Y.; Boyle, N.; Chen, F.; Rajappan, V.; Fagan, P.; Brooks, J.
L.; Hurd, T.; Leeds, J. M.; Rajwanshi, V. K.; Jin, Y.; Prhavc, M.; Bruice,
T. W.; Cook, P. D. J. Med. Chem. 2004, 47, 6902.
(11) 31P NMR: δ ) 14.4. ESI-MS: 121.0 [(M - H)-].
(12) (a) Gail, R.; Costisella, B.; Ahmadian, M. R.; Wittinghofer, A. Chem-
biochem 2001, 2, 570. (b) Knorre, D. G.; Kurbatov, V. A.; Samukov, V.
V. FEBS Lett. 1976, 70, 105.
(13) (a) Phosphoroselenoate has recently emerged as an interesting phosphate
analogue due to its applications in X-ray structure analysis of nucleic acids.
See ref 8b and Hobartner, C.; Micura, R. J. Am. Chem. Soc. 2004, 126,
1141. (b) To the best of our knowledge, the approach reported here
represents the only other method to prepare NDPRSe in addition to the
oxathiaphospholane methodology by Misiura, K.; Szymanowicz, D.; Stec,
W. J. Org Lett 2005, 7, 2217.
(14) Major, D. T.; Nahum, V.; Wang, Y. F.; Reiser, G.; Fischer, B. J. Med.
Chem. 2004, 47, 4405.
(15) (a) Lister, G. M. S.; Jones, R. J. Phys. Condens. Matter 1989, 1, 6039.
(b) Summers, J. S.; Roe, D.; Boyle, P. D.; Colvin, M.; Shaw, B. R. Inorg.
Chem. 1998, 37, 4158. (c) Volk, D. E.; Power, T. D.; Gorenstein, D. G.;
Luxon, B. A. Tetrahedron Lett. 2002, 43, 4443.
(16) Krishnan, P.; Fu, Q.; Lam, W.; Liou, J. Y.; Dutschman, G.; Cheng, Y. C.
J. Biol. Chem. 2002, 277, 5453.
To better understand the biological effect of BH3 substitution,
we investigated the binding affinity of Rp- and Sp-ADPRB to rabbit
muscle creatine kinase (CK) and pyruvate kinase (PK), which may
be responsible for the last phosphorylation of some antiviral NDP
analogues.16 By using a fluorescence quenching technique,17 the
results indicate that both enzymes bound two NDP molecules per
CK dimer and PK tetramer with strong negative cooperativity.
(17) Borders, C. L.; Snider, M. J.; Wolfenden, R.; Edmiston, P. L. Biochemistry
2002, 41, 6995.
JA055179Y
9
J. AM. CHEM. SOC. VOL. 127, NO. 48, 2005 16783