OBn OMe
([a]2D3 220.6) along with a small amount of the corresponding
cis-isomer (ratio, 93: 7) in 70% overall yield. Finally, debenzyl-
ation with Pd-black in a solution of 8.8% formic acid in MeOH
gave O,O-dimethylkorupensamine A 22 (R = H) ([a]2D2 229.1)
in 91% yield.
In conclusion, we have demonstrated the asymmetric synthe-
sis of O,O-dimethylkorupensamine A via a stereoselective Pd0-
mediated cross-coupling method for the construction of the
highly hindered biaryl bond as the key bond forming reaction.
This procedure should have broad utility for the stereoselective
synthesis of structural analogs of the atropisomeric naphthyl-
tetrahydroisoquinoline alkaloids.
OBn OMe
Me
O
i
Me
O
B(OH)2
MeO
Me
9
(CO)3Cr
OMe
10
OBn OMe
ii
Partial financial support for this work was provided by a
Grant-in-Aid for Scientific Research from the Ministry of
Education, Science, Sports and Culture of Japan. We acknowl-
edge the financial support by the Ciba-Geigy Foundation (for
Japan) and The Asahi Glass Foundation.
Me
Me
OR1
MeO
11: R1, R2 = CMe2
iii
12: R1 = H, R2 = H
OR2
iv
Notes and References
13: R1 = H, R2 = TBDMS
14: R1 = C(=S)imid, R2 = TBDMS
v
† E-mail: uemura@ms.cias.osakafu-u.ac.jp
OMe
‡ All optical rotation values were measured in CHCl3 solution.
§ The corresponding di-MOM ether chromium complex analog instead of
the dimethoxy ether complex 6 resulted in a regioisomeric mixture of the
bromination compounds in a 85 :15 ratio by the ortho-lithiation with BunLi
followed by bromination.
vi
OBn OMe
OBn OMe
¶ Crystal data for 10: C17H19BrCrO7, M = 467.23, yellow prismatic,
¯
triclinic, space group P1, a = 9.829(2), b = 13.393(3), c = 7.996(2) Å, a
= 98.27(2), b = 110.31(2), g = 94.38(2)°, U = 967.7(4) Å3, Z = 2, Dc
=
Me
Me
Me
ix
1.603 g cm23, F(000) = 472.00, m = 26.96 cm21, R(Rw) = 0.039 (0.053).
A total of 4729 data were collected using w scans with 22.35 < 2q <
24.98°. Of these 4467 were unique (Rint = 0.085). CCDC 182/795.
Me
MeO
MeO
R2
R1
NHR
1 Y. F. Hallock, K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, M.
Scha¨ffer, K.-P. Gulden, G. Bringmann, A. Y. Lee, J. Clardy, G. François
and M. R. Boyd, J. Org. Chem., 1994, 59, 6349.
OMe
OMe
15: R1 = OTBDMS, R2 = H
16: R1 = OH, R2 = H
17: R1 = H, R2 = N3
18: R = H
19: R = Ac
vii
x
2 K. P. Manfredi, J. W. Blunt, J. H. Cardellina II, J. B. McMahon, L. L.
Pannell, G. M. Cragg and M. R. Boyd, J. Med. Chem., 1991, 34, 3402;
M. R. Boyd, Y. F. Hallock, J. H. Cardellina II, J. W. Blunt, J. B.
McMahon, R. W. Buckheit, Jr., G. Bringmann, M. Scha¨ffer, G. M.
Cragg, D. W. Thomas and J. G. Jato, J. Med. Chem., 1994, 37, 1740;
J. B. McMahon, M. J. Currens, R. J. Gulakowski, R. W. Buckheit, Jr.,
C. Lackman-Smith, Y. F. Hallock and M. R. Boyd, Antimicrob. Agents
Chemother., 1995, 39, 484.
3 T. R. Hoye, M. Chen, L. Mi and O. P. Priest, Tetrahedron Lett., 1994,
35, 8747; T. R. Hoye and L. Mi, Tetrahedron Lett., 1996, 37, 3097; T. R.
Hoye and M. Chen, Tetrahedron Lett., 1996, 37, 3099; T. R. Hoye and
M. Chen, J. Org. Chem., 1996, 61, 7940; G. Brignmann, R. Go¨tz, P. A.
Keller, R. Walter, P. Henschel, M. Scha¨ffer, M. Sta¨blein, T. R. Kelly
and M. R. Boyd, Heterocycles, 1994, 39, 503; P. D. Hobbs, V. Upender,
J. Liu, D. J. Pollart, D. W. Thomas and M. I. Dawson, Chem. Commun.,
1996, 923; P. D. Hobbs, V. Upender and M. I. Dawson, Synlett, 1997.
965.
4 M. A. Rizzacasa and M. V. Sargent, J. Chem. Soc., Chem. Commun.,
1990, 894; B. N. Leighton and M. A. Rizzacasa, J. Org. Chem., 1995,
60, 5702.
5 K. Kamikawa, T. Watanabe and M. Uemura, J. Org. Chem., 1996, 61,
1375.
6 K. Kamikawa, T. Watanabe and M. Uemura, Synlett, 1996, 1040.
7 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung,
K.-S. Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu and X.-L.
Zhang, J. Org. Chem., 1992, 57, 2768.
viii
OR
OBn OMe
OMe
xi
Me
Me
Me
Me
MeO
xii
MeO
NH
N
Me
OMe
Me
OMe
20
21: R = Bn
22: R = H
xiii
Scheme 2 Reagents and conditions: i, 8, Pd(PPh3)4 (0.05 mol equiv.), aq.
Na2CO3, MeOH, 75 °C, 30 min, 90%; ii, hn, O2, diethyl ether, 92%; iii, 1 m
aq. HCl, THF, 50 °C, 96%; iv, ButMe2SiCl, imidazole, DMF, 84%;
v, (imid)2CNS, THF; vi, Bun3SnH, AIBN, toluene, 62% from 13; vii,
Bun4NF, THF, 96%; viii, (PhO)2PON3, DEAD, PPh3, THF; ix, SnCl2,
MeOH; x, Ac2O, py, 66%, from 16; xi, POCl3, MeCN; xii, LiAlH4, Me3Al,
THF, 278 to 0 °C, 70% from 19; xiii, Pd-black, HCO2H, MeOH, 45 °C,
91%
84% yield. The benzylic hydroxyl of 13 was removed by the
Barton method9 to give the deoxygenation compound 15 ([a]2D6
+11.9) in 62% yield. The substitution of the hydroxyl to
nitrogen atom with stereochemical inversion was achieved
under Mitsunobu conditions.10 Thus, deprotection of the silyl
ether 15 and subsequent treatment with (PhO)2PON3 in the
presence of DEAD and PPh3 produced the azide compound 17
which was reduced with SnCl2 followed by acetylation to give
the amide compound 19 ([a]2D6 +8.1) in 66% overall yield.
Bischler–Napieralski cyclization of 19 with POCl3 in acetoni-
trile gave the naphthyldihydroisoquinoline compound 20.
Reduction11 of the imine double bond of 20 with LiAlH4 in the
presence of Me3Al afforded trans-dimethyl compound 21
8 Compound 11 was prepared by a modified procedure of the following
reference; M. Watanabe, S. Hisamatsu, H. Hotokezaka and S.
Furukawa, Chem. Pharm. Bull., 1986, 34, 2810.
9 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1,
1975, 1574.
10 O. Mitsunobu, Synthesis, 1981, 1.
11 G. Bringmann, J. R. Jansen and H.-P. Rink, Angew. Chem., Int. Ed.
Engl., 1986, 25, 913; G. Bringmann, R. Weirich, H. Reuscher, J. R.
Jansen, L. Kinzinger and T. Ortmann, Liebigs. Ann. Chem., 1993, 877;
R. Jansen and H.-P. Rink, Angew. Chem., Int. Ed. Engl., 1986, 25, 913;
K. Maruoka and H. Yamamoto, Angew. Chem., Int. Ed. Engl., 1985, 24,
668.
Received in Cambridge, UK, 2nd January 1998; 8/00075A
872
Chem. Commun., 1998