research papers
structures were retrieved from the CSD, there is no doubt that
the trend observed here is analogous to that found for
subclasses (IIb) and (IIc). The only structure of subclass (IId),
which displays an H atom as substituent in position 1, exhibits
We thank MIUR (Rome) for COFIN 2004 financial support
as part of our project ‘Smart Hydrogen Bonds in Nature and
Functional Materials’.
˚
the longer Nꢀ ꢀ ꢀO distance of 2.64 A and a sum of internal
angles of 367ꢄ, while the structures of subclass (IIe), because
of the strong intramolecular steric hindrance between O2 and
References
˚
Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday,
A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard,
O., Motherwell, W. D. S., Rodgers, J. & Watson, D. G. (1979). Acta
Cryst. B35, 2331–2339.
R1, exhibit a shorter Nꢀ ꢀ ꢀO distance of 2.58 A, with a
concomitant narrowing of the enaminonic internal angles,
whose sum is 364ꢄ.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G.
& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L.,
Giacovazzo, C., Guagliardi, A., Moliterni, A. G., Polidori, G. &
Spagna, R. (1999). J. Appl. Cryst. 32, 115–116.
Arod, F., Pardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst.
C61, o317–o320.
Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E.
(1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228.
Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc.
113, 4917–4925.
Bertolasi, V., Gilli, P., Ferretti, V., Gilli, G. & Vaughan, K. (1999). New
J. Chem. 23, 1261–1267.
Bertolasi, V., Nanni, L., Gilli, G., Ferretti, V., Gilli, P., Issa, Y. M. &
Sherif, O. E. (1994). New J. Chem. 18, 251–261.
Bertolasi, V., Pretto, L., Gilli, G. & Gilli, P. (2006). Acta Cryst. B62,
850–863.
Burgess, J., Fawcett, J., Russell, D. R., Gilani, S. R. & Palma, V. (1999).
Acta Cryst. C55, 1707–1710.
4. Conclusions
All the reported structural data of intramolecularly hydrogen-
bonded ꢀ-enaminones suggest that the Nꢀ ꢀ ꢀO bond length is
determined by two main factors: the ꢈ-conjugation of the
resonant fragment and the intramolecular steric interactions
involving the substituents at the heterodienic system. Simple
ꢀ-enaminones (Ia) display extended ꢈ-conjugation of the
heterodienic group, but the RAHB effect alone does not
produce a significant shortening of Nꢀ ꢀ ꢀO hydrogen-bond
˚
distances below 2.67 A because of the different proton affi-
nities of the N and O atoms and because of the absence of
strong intramolecular steric compression. Moderate short-
˚
enings down to 2.61 A are, however, produced in subclasses
(Ib)–(Id) by the introduction of aliphatic six-membered rings
fused with the enaminonic moiety, which contribute to stif-
fening the overall structure.
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-
6895. Oak Ridge National Laboratory, Tennessee, USA.
Chisholm, G., Kennedy, A. R., Wilson, S. & Teat, S. J. (2000). Acta
Cryst. B56, 1046–1053.
˚
Significant Nꢀ ꢀ ꢀO shortenings down to 2.55 A can be
´
ˇ
Cindric, M., Novak, T. K. & Uzarevic, K. (2005). J. Mol. Struct. 750,
´
achieved only in compounds (II) having, at the same time, the
ꢀ-enaminone system included in a six-membered aliphatic
ring, a further ꢀ0-keto group substituted in position 2 and
substituents able to produce strong intramolecular repulsive
interactions.
135–141.
Emsley, J. (1984). Struct. Bonding, 57, 147–191.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Ferretti, V., Bertolasi, V., Gilli, P. & Gilli, G. (1993). J. Phys. Chem. 97,
13568–13574.
Filarowski, A. (2005). J. Phys. Org. Chem. 18, 686–698.
Filarowski, A., Kochel, A., Cieslik, K. & Koll, A. (2005). J. Phys. Org.
Chem. 18, 986–993.
Filarowski, A., Koll, A. & Glowiak, T. (2002). J. Mol. Struct. 615, 97–
108.
Fukuda, H., Amimoto, K., Koyama, H. & Kawato, T. (2003). Org.
Biomol. Chem. 1, 1578–1583.
Gawinecki, R., Kolehmainen, E., Janota, H., Kauppinen, R., Nissinen,
M. & Osmialowski, B. (2001). J. Phys. Org. Chem. 14, 797–803.
Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem.
Soc. 111, 1023–1028.
Gilli, G. & Bertolasi, V. (1990). The Chemistry of Enols, edited by Z.
Rappoport, ch. 13, pp. 713–764. Chichester, UK: J. Wiley and Sons.
Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc.
112, 10405–10417.
Gilli, P., Bertolasi, V., Pretto, L., Antonov, L. & Gilli, G. (2005). J. Am.
Chem. Soc. 117, 4943–4953.
Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am.
Chem. Soc. 126, 3845–3855.
It seems interesting that the ꢈ-delocalization index (Table 4)
remains essentially fixed to the value of 78% of simple
ꢀ-enaminones (Ia), irrespective of the shortening of the Nꢀ ꢀ ꢀO
distance, the only exception being the strongest hydrogen
˚
bonds in (IIc) (Nꢀ ꢀ ꢀO of 2.55 A), for which this index suddenly
rises to 96%. This can be interpreted on the grounds of the
observation that resonance-assisted hydrogen bonding simply
attests the existence of an intercorrelation between Nꢀ ꢀ ꢀO
shortening and increased ꢈ-delocalization (Gilli et al., 2005),
but tells nothing about the original cause of the shortening (i.e.
the ꢈ-delocalization itself or the steric compression on the
hydrogen-bonded ring). The present data are consistent with
the idea that the ꢈ-delocalization is certainly the driving force
˚
of Nꢀ ꢀ ꢀO contraction up to 2.67 A [the value observed for
simple ꢀ-enaminones (Ia)]. Below this limit the steering
factors become steric and are controlled by the relative
encumbrances of the different substituents. Only when this
compression reaches a maximum [and the Nꢀ ꢀ ꢀO distance a
Gilli, P., Bertolasi, V., Pretto, L. & Gilli, G. (2006). J. Mol. Struct. 790,
40–49.
ˇ
Gilli, P., Bertolasi, V., Pretto, L., Lycka, A. & Gilli, G. (2002). J. Am.
Chem. Soc. 124, 13554–13567.
Gilli, G. & Gilli, G. (2000). J. Mol. Struct. 552, 1–15.
Inabe, T. (1991). New J. Chem. 15, 129–136.
Inabe, T., Luneau, I., Mitani, T., Maruyama, Y. & Takeda, S. (1994).
Bull. Chem. Soc. Jpn, 67, 612–621.
˚
minimum of 2.55 A in (IIc)] can the RAHB mechanism induce
a further delocalization of the resonant fragment, delocaliza-
tion which, however, is not the driving force but the driven
factor of the process.
ꢃ
Acta Cryst. (2006). B62, 1112–1120
Valerio Bertolasi et al.
RAHBs in ꢀ-enaminones 1119