10.1002/anie.201907349
Angewandte Chemie International Edition
COMMUNICATION
[2]
a) G. A. Molander, J. Raushel, N. M. Ellis, J. Org. Chem. 2010, 75, 4304.
b) A. M. Dumas, G. A. Molander, J. W. Bode, Angew. Chem. Int. Ed.
2012, 51, 5683. c) H. Noda, J. W. Bode, Chem Sci 2014, 5, 4328. d) H.
Noda, G. Erős, J. W. Bode, J. Am. Chem. Soc. 2014, 136, 5611. e) H.
Noda, J. W. Bode, J. Am. Chem. Soc. 2015, 137, 3958. f) D. Mazunin,
N. Broguiere, M. Zenobi-Wong, J. W. Bode, ACS Biomater. Sci. Eng.
2015, 1, 456. g) H. Noda, J. W. Bode, Org. Biomol. Chem. 2016, 14, 16.
h) S. M. Liu, D. Mazunin, V. R. Pattabiraman, J. W. Bode, Org. Lett.
2016, 18, 5336. i) F. Saito, J. W. Bode, Chem. Sci. 2017, 8, 2878. j) D.
Mazunin, J. W. Bode, Helv. Chim. Acta 2017, 100, e1600311. k) A. O.
Gálvez, C. P. Schaack, H. Noda, J. W. Bode, J. Am. Chem. Soc. 2017,
139, 1826. l) C. J. White, J. W. Bode, ACS Cent. Sci. 2018, 4, 197. m)
D. Schauenburg, A. O. Gálvez, J. W. Bode, J. Mater. Chem. B 2018, 6,
4775. n) G. N. Boross, D. Schauenburg, J. W. Bode, Helv. Chim. Acta
2018, hlca.201800214.
a) Z. He, P. Trinchera, S. Adachi, J. D. St. Denis, A. K. Yudin, Angew.
Chem. Int. Ed. 2012, 51, 11092. b) S. Adachi, S. K. Liew, C. F. Lee, A.
Lough, Z. He, J. D. St. Denis, G. Poda, A. K. Yudin, Org. Lett. 2015, 17,
5594. c) C. F. Lee, A. Holownia, J. M. Bennett, J. M. Elkins, J. D. St.
Denis, S. Adachi, A. K. Yudin, Angew. Chem. Int. Ed. 2017, 56, 6264.
a) Z. He, A. Zajdlik, J. D. St. Denis, N. Assem, A. K. Yudin, J. Am. Chem.
Soc. 2012, 134, 9926. b) D. B. Diaz, C. C. G. Scully, S. K. Liew, S.
Adachi, P. Trinchera, J. D. St. Denis, A. K. Yudin, Angew. Chem. Int.
Ed. 2016, 55, 12659. c) T. Shiro, A. Schuhmacher, M. K. Jackl, J. W.
Bode, Chem. Sci. 2018, 9, 5191. d) M. K. Jackl, A. Schuhmacher, T.
Shiro, J. W. Bode, Org. Lett. 2018, 20, 4044.
a) Y. Segawa, M. Yamashita, K. Nozaki, Science 2006, 314, 113. b) H.
Braunschweig, Angew. Chem. Int. Ed. 2007, 46, 1946. c) M. Yamashita,
Y. Suzuki, Y. Segawa, K. Nozaki, J. Am. Chem. Soc. 2007, 129, 9570.
d) Y. Segawa, M. Yamashita, K. Nozaki, Angew. Chem. Int. Ed. 2007,
46, 6710. e) Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am.
Chem. Soc. 2008, 130, 16069. f) J. Monot, A. Solovyev, H. Bonin-
Dubarle, É. Derat, D. P. Curran, M. Robert, L. Fensterbank, M. Malacria,
E. Lacôte, Angew. Chem. Int. Ed. 2010, 49, 9166. g) R. Frank, J. Howell,
J. Campos, R. Tirfoin, N. Phillips, S. Zahn, D. M. P. Mingos, S. Aldridge,
Angew. Chem. Int. Ed. 2015, 54, 9586. h) J. Campos, S. Aldridge,
Angew. Chem. Int. Ed. 2015, 54, 14159.
needed (16e, 16f, 17e-g). The air present in the reaction vessel
might serve as the oxidant for aromatization for the synthesis of
quinoxalines. Similarly, the telescoped synthesis of borylated
imidazo[1,2-a]pyridines
b]pyridazine (19a), borylated imidazo[1,2-a]pyrimidines (19b-e),
were also feasible. Interestingly, expanding the
(18a-g),
borylated
imidazo[1,2-
substitution/condensation methodology with phenylhydrazine
resulted in a formation of borylated 1,2-dihydro-1,2-diazete
product (20). And the reaction of malononitrile successfully
delivered the 2-borylated furans (21a-f) in moderate to high yields.
In all these cases, complete regioselectivity was observed and the
obtained 2-MIDA boryl heteroarenes are air-stable as indicated
previously.[3,4,23] To the best of our knowledge, 2-boryl derivatives
of imidazo[1,2-b]pyridazine (19a) and 1,2-dihydro-1,2-diazete (20)
have not been reported in the literature.
[3]
[4]
The synthetic value of the products was also explored. When
reacting MIDA acylboronate 8 with benzyl azide,[2a] the amide
ligation product 22 could be obtained (eq 1). On the other hand,
the borylated thiazole 16e was subjected to Suzuki-Miyaura
coupling under our previously reported conditions,[17] leading to
synthesis of a fully-substituted thiazole 23 in 82% yield (eq 2).
[5]
[6]
[7]
a) G. A. Molander, J. Raushel, N. M. Ellis, J. Org. Chem. 2010, 75, 4304.
b) A. M. Dumas, J. W. Bode, Org. Lett. 2012, 14, 2138.
a) G. Erős, Y. Kushida, J. W. Bode, Angew. Chem. Int. Ed. 2014, 53,
7604. b) S. M. Liu, D. Mazunin, V. R. Pattabiraman, J. W. Bode, Org.
Lett. 2016, 18, 5336.
[8]
D. Wu, N. A. Fohn, J. W. Bode, Angew. Chem. Int. Ed. 2019, 58, DOI
10.1002/anie.201904576.
[9]
Z. He, P. Trinchera, S. Adachi, J. D. St. Denis, A. K. Yudin, Angew.
Chem. Int. Ed. 2012, 51, 11092.
S. Adachi, S. K. Liew, C. F. Lee, A. Lough, Z. He, J. D. St. Denis, G.
Poda, A. K. Yudin, Org. Lett. 2015, 17, 5594–559.
C. F. Lee, A. Holownia, J. M. Bennett, J. M. Elkins, J. D. St. Denis, S.
Adachi, A. K. Yudin, Angew. Chem. Int. Ed. 2017, 56, 6264.
S. Lin, L. Wang, N. Aminoleslami, Y. Lao, C. Yagel, A. Sharma, Chem.
Sci. 2019, 10, 4684.
J. Taguchi, T. Takeuchi, R. Takahashi, F. Masero, H. Ito, Angew. Chem.
Int. Ed. 2019, 58, 7299.
M. L. Lepage, S. Lai, N. Peressin, R. Hadjerci, B. O. Patrick, D. M.
Perrin, Angew. Chem. Int. Ed. 2017, 56, 15257.
J. Taguchi, T. Ikeda, R. Takahashi, I. Sasaki, Y. Ogasawara, T. Dairi,
N. Kato, Y. Yamamoto, J. W. Bode, H. Ito, Angew. Chem. Int. Ed. 2017,
56, 13847.
Y. Horiuchi, M. Taniguchi, K. Oshima, K. Utimoto, Tetrahedron Lett.
1995, 36, 5353.
Y.-F. Zeng, W.-W. Ji, W.-X. Lv, Y. Chen, D.-H. Tan, Q. Li, H. Wang,
Angew. Chem. Int. Ed. 2017, 56, 14707.
In conclusion, the bench-stable α-chloroepoxyboronates
served as intriguing synthons toward the modular synthesis of a
wide variety of synthetically important organoborons. These
include 7 types of -functionlized acylboronates and 7 types of
borylated heteroarenes, some of which are difficult-to-access
products using alternative methods. All the products reported
could be isolated in chemically pure form and are bench-stable
solids, which ease them synthetic applications. Mild reaction
conditions, generally good yields, and exclusive regioselectivity
were observed. Synthetic applications to amide ligation reaction
and cross-coupling reactions were demonstrated.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
Acknowledgements
[18]
[19]
[20]
Z. He, A. K. Yudin, J. Am. Chem. Soc. 2011, 133, 13770.
J. Li, M. D. Burke, J. Am. Chem. Soc. 2011, 133, 13774.
R. K. Shiroodi, O. Koleda, V. Gevorgyan, J. Am. Chem. Soc. 2014, 136,
13146.
Financial supports from the Key Project of Chinese National
Programs for Fundamental Research and Development
(2016YFA0602900), the Local Innovative and Research Teams
Project of Guangdong Pearl River Talents Program
(2017BT01Y093) are gratefully acknowledged.
[21]
[22]
[22]
[23]
For supporting infnormation for details.
J.-P. Bégué, D. Bonnet-Delpon, B. Crousse, Synlett 2004, 18.
J.-P. Bégué, D. Bonnet-Delpon, B. Crousse, Synlett 2004, 18.
Previously, we observed a vertical alignment of the C-B(MIDA) bond
with respect to the carbonyl C=O bond in the crystal structures of a
fluorinated α-boryl ketone compound (CCDC 1450162), which might be
an evidence that the hyper-conjugation is indeed a driving force. For
details, see: W.-X. Lv, Y.-F. Zeng, Q. Li, Y. Chen, D.-H. Tan, L. Yang,
H. Wang, Angew. Chem. Int. Ed. 2016, 55, 10069.
Keywords: acylboronate
•
borylated heteroarene
•
-
chloroepoxyboronate • rearrangement • ring-opening
[24]
a) A. Suzuki, Acc. Chem. Res. 1982, 15, 178 b) Norio. Miyaura, Akira.
Suzuki, Chem. Rev. 1995, 95, 2457. c) A. de Meijere, F. Diederich,
Eds. , Metal‐Catalyzed Cross‐Coupling Reactions, Wiley, 2004. d) D.
[1]
a) M. R. Ibrahim, M. Bühl, R. Knab, P. V. R. Schleyer, J. Comput. Chem.
1992, 13, 423. b) H. Noda, J. W. Bode, J. Am. Chem. Soc. 2015, 137,
3958. c) J. D. St. Denis, Z. He, A. K. Yudin, ACS Catal. 2015, 5, 5373.
d) H. Noda, J. W. Bode, Org. Biomol. Chem. 2016, 14, 16. e) F. K.
Scharnagl, S. K. Bose, T. B. Marder, Org. Biomol. Chem. 2017, 15,
1738.
G. Hall, Ed. , Boronic Acids: Preparation and Applications in Organic
Synthesis and Medicine, Wiley, 2005. e) R. Jana, T. P. Pathak, M. S.
Sigman, Chem. Rev. 2011, 111, 1417. f) D. G. Hall, Ed. , Boronic Acids:
Preparation and Applications in Organic Synthesis, Medicine and
Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany,
2011. g) J. F. Hartwig, Acc. Chem. Res. 2012, 45, 864. h) M. Burns, S.
This article is protected by copyright. All rights reserved.