406 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 3
Slee et al.
4H), 3.60–3.48 (m, 4H), 3.02 (s, 3H). MS: m/z 368 [M + H]+,
expected 368 [M + H]+. Anal. (C18H21N7O2 ·2HCl·0.9H2O)
C, H, N.
2-Dimethylamino-N-(2-furan-2-yl-6-pyrazol-1-yl-pyrimi-
din-4-yl)-acetamide (20). Compound 20 as a pale yellow solid
(50% yield). 1H NMR (300 MHz, CDCl3): δ 9.87 (s, 1H), 8.65
(d, J ) 3, 1H), 8.62 (s, 1H), 7.81 (d, J ) 1, 1H), 7.65 (d, J )
1, 1H), 7.37 (d, J ) 3.6, 1H), 6.59 (dd, J ) 3.6, 1.8, 1H), 6.50
(dd, J ) 3.0, 1.5, 1H), 3.16 (s, 2H), 2.39 (s, 6H). LCMS-2: tR
) 3.8 (98%). LCMS-4: tR ) 5.2 (100%). MS: m/z 313 [M +
H]+, expected 313 [M + H]+.
N-(2-Furan-2-yl-6-pyrazol-1-yl-pyrimidin-4-yl)-2-morpho-
lin-4-yl-acetamide (21). Compound 21 as a white foam (0.5 g,
27% yield). 1H NMR (300 MHz, CD3OD): δ 8.65 (s, 1H), 8.32
(s, 1H), 7.98 (s, 1H), 7.69 (s, 1H), 7.31 (s, 1H), 6.59 (s, 1H),
6.54 (s, 1H), 3.80–4.15 (m, 4H), 3.30–3.75 (m, 4H), 3.30 (s,
2H). LCMS-5: tR ) 13.0 (99%). LCMS-6: tR ) 22.7, MS: m/z
355 [M + H]+, expected 355 [M + H]+. Anal. (C17H18N6O3
·HCl·1/4H2O) C, H, N.
quinolinic acid-induced excitotoxicity: possible relevance to neuro-
protective interventions in neurodegenerative diseases of the striatum.
J. Neurosci. 2002, 22, 1967–1975. (c) Mangiarini, L.; Sathasivam,
K.; Seller, M. ; Cozens, B.; Harper, A.; Hetherington, C.; Lawton,
M.; Trottier, Y.; Lehrach, H.; Davies, S. W.; Bates, G. P. Exon 1 of
the HD gene with an expanded CAG repeat is sufficient to cause a
progressive neurological phenotype in transgenic mice. Cell 1996, 87,
493–506. (d) Hickey, M. A.; Gallant, K.; Gross, G. G.; Levine, M. S.;
Chesselet, M. F. Early behavioral deficits in R6/2 mice suitable for
use in preclinical drug testing. Neurobiol. Dis. 2005, 20, 1–11. (e)
Popoli, P.; Blum, D.; Martire, A.; Ledent, C.; Ceruti, S.; Abbracchio,
M. P. Functions, dysfunctions and possible therapeutic relevance of
adenosine A(2A) receptors in Huntington’s disease. Prog. Neurobiol.
2007, 81, 331–348. (f) Scattoni, M. L.; Valanzano, A.; Pezzola, A.;
March, Z. D.; Fusco, F. R.; Popoli, P.; Calamandrei, G. Adenosine
A2A receptor blockade before striatal excitotoxic lesions prevents long
term behavioural disturbances in the quinolinic rat model of Hunting-
ton’s disease. BehaV. Brain. Res. 2007, 176, 216–221. (g) Blum, D.;
Hourez, R.; Galas, M. C.; Popoli, P.; Schiffmann, S. N. Adenosine
receptors and Huntington’s disease: Implications for pathogenesis and
therapeutics. Lancet Neurol. 2003, 2, 366–74.
(4) Happe, S.; Sauter, C.; Klosch, G.; Saletu, B.; Zeitlhofer, J. Gabapentin
versus ropinirole in the treatment of idiopathic restless legs syndrome.
Neuropsychobiology. 2003, 48, 82–86.
(5) (a) Jenner, P. Pathophysiology and biochemistry of dyskinesia: Clues
for the development of non-dopaminergic treatments. J. Neurol. 2000,
247, 43–50. (b) Bibbiani, F.; Oh, J. D.; Petzer, J. P.; Castagnoli, N.,
Jr.; Chen, J. F.; Schwarzschild, M. A; Chase, T. N. A2A antagonist
prevents dopamine agonist-induced motor complications in animal
models of Parkinson’s disease. Exp. Neurol. 2003, 184, 285–294. (c)
Kanda, T.; Jackson, M. J.; Smith, L. A.; Pearce, R. K.; Nakamura, J.;
Kase, H.; Kuwana, Y.; Jenner, P. Combined use of the adenosine A(2A)
antagonist KW-6002 with L-DOPA or with selective D1 or D2
dopamine agonists increases antiparkinsonian activity but not dyski-
nesia in MPTP-treated monkeys. Exp. Neurol. 2000, 162, 321–327.
(6) (a) Jacobson, K. A.; Gao, Z. G. Adenosine receptors as therapeutic
targets. Nat. ReV. Drug DiscoVery 2006, 5, 247–264. (b) Moro, S.;
Gao, Z. G.; Jacobson, K. A.; Spalluto, G. Progress in the pursuit of
therapeutic adenosine receptor antagonists. Med. Res. ReV. 2006, 26,
131–159. (c) Yuzlenko, O.; Kiec-Kononowicz, K. Potent adenosine
A1 and A2A receptors antagonists: Recent developments. Curr. Med.
Chem. 2006, 13, 3609–3625.
(7) Jenner, P. Istradefylline, a novel adenosine A2A receptor antagonist,
for the treatment of Parkinson’s disease. Expert Opin. InVest. Drugs
2005, 14, 729–738.
(8) Neustadt, B. R.; Hao, J.; Lindo, N.; Greenlee, W. J.; Stamford, A. W.;
Tulshian, D.; Ongini, E.; Hunter, J.; Monopoli, A.; Bertorelli, R.;
Foster, C.; Arik, L.; Lachowicz, J.; Ng, K.; Feng, K.-I. Potent, selective,
and orally active adenosine A2A receptor antagonists: Arylpiperazine
derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg.
Med. Chem. Lett. 2007, 17, 1376–1380.
N-(2-Furan-2-yl-6-thiazol-2-yl-pyrimidin-4-yl)-2-(4-meth-
yl-piperazin-1-yl)-acetamide (22). Compound 19a was reacted
with methyl piperazine, according to the procedure described
for compounds 3, 20, and 21 above, to give compound 22 as a
slightly yellow solid (59% yield). 1H NMR (300 MHz, CDCl3):
δ 9.70 (s, 1H), 8.79 (s, 1H), 8.02 (d, J ) 3, 1H), 7.67 (d, J )
1.8, 1H), 7.55 (d, J ) 3, 1H), 7.43 (d, J ) 3.9, 1H), 6.61 (dd,
J ) 3.6, 1.8, 1H), 3.22 (s, 2H), 2.66 (m, 4H), 2.56 (m, 4H),
2.34 (s, 3H). LCMS-5: tR ) 22.6 (100%). MS: m/z 385 [M +
H]+, expected 385 [M + H]+. Anal. (C18H20N6O2S·2HCl) C,
H, N.
N-[6-(3,5-Dimethyl-pyrazol-1-yl)-2-furan-2-yl-pyrimidin-
4-yl]-2-(4-methyl-piperazin-1-yl)-acetamide (23). Intermediate
19b was reacted with methyl piperazine according to the
procedure described for compounds 3, 20 and 21, to give
compound 23 as an off-white flaky solid (76% yield). 1H NMR
(free base; 300 MHz, CD3OD): δ 7.76 (dd, J ) 1.5, 0.6, 1H),
7.31 (dd, J ) 3.6, 0.9, 1H), 6.65 (dd, J ) 3.6, 1.8, 1H), 6.13 (s,
1H), 3.29 (s, 2H), 2.77 (s, 3H), 2.54–2.75 (m, 8H), 2.35 (s,
3H), 2.27 (s, 3H). LCMS-5: tR ) 17.0 (100%).
Acknowledgment. We thank Shawn Ayube, Paddi Ekhlassi,
and John Harman for analytical support and Kayvon Jalali for
preclinical input.
(9) Lightowler, S. Presented at the International Research Conference,
Targeting Adenosine A2A Receptors in Parkinson’s Disease and other
CNS Disorders, Boston, MA, May 2006.
(10) (a) Applications and Theory Guide to pH-metric pKa and logP Deter-
mination; Sirius Analytical Instruments, Ltd.: Forest Row, U.K., 1993.
(b) Avdeef, A.; Bucher, J. J. Accurate measurements of the concentra-
tion of hydrogen ions with a glass electrode: calibrations using the
Prideaux and other universal buffer solutions and a computer-controlled
automatic titrator. Anal. Chem. 1978, 50, 2137–2142. (c) Avdeef, A.;
Comer, J. E. A.; Thomson, S. J. spH-metric Log P. 3. Glass electrode
calibration in methanol-water, applied to pKa determination of water-
insoluble substances. Anal. Chem. 1993, 565, 42–49.
Supporting Information Available: Copies of NMR and LCMS
data are available on final compounds, along with detailed descrip-
tions of HPLC conditions for compound analysis. This material is
References
(1) Kenakin, T. Quantitative pharmacology of GPCRs. Understanding G
Protein-Coupled Receptors and Their Role in the CNS; Oxford
University Press: Oxford, U.K., 2002; pp 141–157.
(2) Svenningsson, P.; Le Moine, C.; Fisone, G.; Fredholm, B. B.
Distribution, biochemistry and function of striatal adenosine A2A
receptors. Prog. Neurobiol. 1999, 59, 355–396.
(12) Weiss, S. M.; Benwell, K.; Cliffe, I. A.; Gillespie, R. J.; Knight, A. R.;
Lerpiniere, J.; Misra, A.; Pratt, R. M.; Revell, D.; Upton, R.; Dourish,
C. T. Discovery of nonxanthine adenosine A2A receptor antagonists for
the treatment of Parkinson’s disease. Neurology 2003, 61, S101–S106.
(3) (a) Tuite, P.; Riss, J. Recent developments in the pharmacological
treatment of Parkinson’s disease. Expert Opin. InVest. Drugs 2003,
12, 1335–1352. (b) Popoli, P.; Pintor, A.; Domenici, M. R.; Frank,
C.; Tebano, M. T.; Pezzola, A.; Scarchilli, L.; Quarta, D.; Reggio,
R.; Malchiodi-Albedi, F.; Falchi, M.; Massotti, M. Blockade of striatal
adenosine A2A receptor reduces, through a presynaptic mechanism,
(13) Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant
(K1) and the concentration of inhibitor, which causes 50% inhibition
(I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22,
3099–3108.
JM070623O