not surprising since we could check a posteriori, using
[(Z2-dppe)(Z5-C5Me5)FeCRCPh][PF6] (15[PF6]) to model
the Fe(III) substituents, that the reaction medium was certainly
reducing them back to Fe(II) ones during the early reaction
course.35 Along the same lines, when checking if the added
ferricinium salt did not exert any detrimental effect on the
catalyst activity we have also stated that ferricinium was
reduced back to ferrocene during the run, further evidencing
the reducing nature of the reaction medium at 50 1C. Obviously,
the medium is too reducing to allow for the survival of any
Fe(III) ‘‘[(Z2-dppe)(Z5-C5Me5)FeCRC-]+’’ substituent under
the operating conditions.
13 S.-Y. Liu, M. J. Choi and G. C. Fu, Chem. Commun., 2001,
2408–2409.
14 A. Jacob, B. Milde, P. Ecorchard and H. Lang, J. Organomet.
Chem., 2008, 693, 3821–3830.
15 N. T. Lucas, M. P. Cifuentes, L. T. Nguyen and M. G. Humphrey,
J. Cluster Sci., 2001, 12, 201–221.
16 S. Le Stang, D. Lenz, F. Paul and C. Lapinte, J. Organomet.
Chem., 1998, 572, 189–192.
17 R. Denis, T. Weyland, F. Paul and C. Lapinte, J. Organomet.
Chem., 1997, 545–546, 615–618.
18 L. Zhang, Z. Huang, W.-Z. Chen, E.-I. Negishi, P. E. Fanwick,
J. B. Updegraff, J. D. Protasiewicz and T. Ren, Organometallics,
2007, 26, 6526–6528.
19 F. Paul, L. Toupet, J.-Y. Thepot, K. Costuas, J.-F. Halet and
´
C. Lapinte, Organometallics, 2005, 24, 5464–5478.
20 F. Paul and C. Lapinte, Coord. Chem. Rev., 1998, 178–180,
431–509.
21 E. M. Broderick, N. Guo, C. S. Vogel, C. Xu, J. Sutter, J. T. Miller,
K. Meyer, P. Mehrkhodavandi and P. L. Diaconescu, J. Am.
Chem. Soc., 2011, 133, 9278–9281.
´ ´ ´
22 C. Rethore, M. Fourmigue and N. Avarvari, Chem. Commun.,
2004, 1384–1385.
23 A. M. Allgeier and C. A. Mirkin, Angew. Chem., Int. Ed., 1998, 37,
894–908.
24 S. P. H. Mee, V. Lee and J. E. Baldwin, Angew. Chem., Int. Ed.,
2004, 43, 1132–1136.
25 S. P. H. Mee, V. Lee and J. E. Baldwin, Chem.–Eur. J., 2005, 11,
3294–3308.
26 G. Grelaud, G. Argouarch and F. Paul, Tetrahedron Lett., 2010,
51, 3786–3788.
27 R. Denis, L. Toupet, F. Paul and C. Lapinte, Organometallics,
2000, 19, 4240–4251.
In conclusion, we report in this letter the synthesis of new
Pd(II) precatalysts 7–10 from the original phosphine ligands
1–4 and show that these precatalysts can be successfully used
to catalyze aryl–aryl Stille-type cross-coupling reactions. Like-
wise to ferrocenyl substituents, it is thus shown for the first
time that redox-active group 8 transition metal alkynyls, such
as ‘‘(Z2-dppe)(Z5-C5Me5)FeCRC’’ fragments can be used as
a functional group when designing ligands for catalytic trans-
formations. In the particular cross coupling reaction used,
these new organometallic substituents, by virtue of their
electron-releasing power and/or steric bulk, allow to perform
better with 1–4 than with triphenylphosphine. However,
attempts to exploit the redox bistability of these ligands to
control the activity of the catalyst in this transformation were
frustrated by the reducing nature of the reaction medium.
Efforts are underway to test these new redox-active metallo-
ligands in other catalytic reactions.
28 In a Schlenk tube, 5 (0.625 g, 1 mmol), KPF6 (0.221 g, 1.2 mmol)
and (4-ethynylphenyl)diphenylphosphine (0.344 g, 1.2 mmol) were
dissolved in THF (15 mL) and MeOH (15 mL) and stirred over-
night at room temperature. After removal of the solvents, the dark
brown residue was extracted with dichloromethane, concentrated,
reprecipitated with pentane and dried in vacuo to give the corres-
ponding vinylidene complex as an orange solid. This solid was then
stirred for 1 h in THF in the presence of excess DBU (0.44 mL,
3 mmol). Removal of the solvent in vacuo, purification by column
chromatography and washing of the resulting solid with pentane
afforded the acetylide complex 1 (0.63 g, 72%) as an orange
powder. (Calcd for C56H53FeP3: C: 76.89%, H: 6.11%; Found:
C: 76.62%, H: 6.27%). m/z: 874.2711 (M+, 55%) [calc: 874.2709].
Acknowledgements
G.G. thanks Region Bretagne for a scholarship. The ANR
Blanc program is acknowledged for financial support (ANR
2010 BLAN 719).
n
max(KBr)/cmꢀ1 2048 s (CRC). dP(81 MHz; C6D6; H3PO4) 101.4
(2P, s, dppe), ꢀ4.2 (1P, s, PPh2). dH(200 MHz; C6D6; Me4Si) 7.98
(4H, Har, m), 7.48–7.04 (30H, m, Har), 2.62 (2H, m, CH2 dppe) 2.12
(2H, m, CH2 dppe), 1.52 (15H, m, C5Me5). CV (CH2Cl2, 0.1 M
n-Bu4NPF6): E1/2 = ꢀ0.14 V.
Notes and references
1 J. F. Hartwig, Acc. Chem. Res., 2008, 41, 1534–1544.
2 A. Jutand, Chem. Rev., 2008, 108, 2300–2347.
3 Acc. Chem. Res., 2008, 41, 1439–1564, (special issue on cross-
coupling, guest-edited by S. L. Buchwald).
4 J. Courmarcel, G. Le Gland, L. Toupet, F. Paul and C. Lapinte,
J. Organomet. Chem., 2003, 670, 108–122.
5 S. Dietrich, A. Nicolai and H. Lang, J. Organomet. Chem., 2011,
696, 739–747.
´
6 M. Bauperin, A. Job, H. Cattey, S. Royer, P. Meunier and
J.-C. Hierso, Organometallics, 2010, 29, 2815–2822.
7 M. W. P. Bebbington, S. Bontemps, G. Bouhadir, M. J. Hanton,
R. P. Tooze, H. van Rensburg and D. Bourissou, New J. Chem.,
2010, 34, 1556–1559.
%
29 Crystal data for 1: C56H53P3Fe, MZ= 874.74, P1 triclinic space
group, a (A) = 10.9096(6), b (A) = 11.1052(5), c (A) = 20.2561(10),
a(1) = 102.897(3), b(1); = 94.369(3), g(1) = 107.657(2), V (A3) =
2251.97(19), Z = 2, R = 0.063, Rw = 0.110, GOF = 1.017. Crystal
data for 3: C56H53P3Fe, MZ= 874.74, P21/n monoclinic space
group, a (A) = 12.2780(4), b (A) = 21.9742(10), c (A) =
16.8487(7), b(1) = 103.994(2), V (A3) = 4410.9(3), Z = 4, R =
0.050, Rw = 0.0.094, GOF = 1.031.
30 D. Drew and J. R. Doyle, Inorg. Synth., 1990, 28, 346–349.
31 See ESIw for characterization of 7–10.
32 K. Costuas, F. Paul, L. Toupet, J.-F. Halet and C. Lapinte,
Organometallics, 2004, 23, 2053–2068.
33 C. A. Tolman, Chem. Rev., 1977, 77, 313–348.
8 A. Jakob, B. Milde, P. Ecorchard, C. Schreiner and H. Lang,
J. Organomet. Chem., 2008, 693, 3821–3830.
9 D. Schaarschmidt, J. Kuhnert, S. S. Tripke, H. G. Alt, C. Gorl,
¨
Chem., 2010, 695, 1541–1549.
34 C. K. A. Gregson, V. C. Gibson, N. J. Long, E. L. Marshall,
P. J. Oxford and A. J. P. White, J. Am. Chem. Soc., 2006, 128,
7410–7411.
¨
¨
T. Ruffer, P. Ecorchard, B. Walfort and H. Lang, J. Organomet.
10 R. M. Moslin and T. F. Jamison, Org. Lett., 2006, 8, 455–458.
11 C. Baillie, L. Zhang and J. Xiao, J. Org. Chem., 2004, 69, 7779–7782.
12 N. Kataoka, Q. Shelby, P. Stambuli and J. F. Hartwig, J. Org.
Chem., 2002, 67, 5553–5566.
35 When 15[PF6] (83 mg; 0.1 mmol) is heated in DMF (5 mL) at 50 1C
during 12 h in the presence of 4-tolyl tributylstannane 12 (1 eq.)
and CsF (2 eq.), the Fe(II) complex 15 can be recovered in more
than 50% yield after chromatographic separation.
c
2742 New J. Chem., 2011, 35, 2740–2742
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011