G Model
CCLET-6183; No. of Pages 5
C. Chen, H. Zhang, G. Xu et al.
Chinese Chemical Letters xxx (xxxx) xxx–xxx
[2] (a) R. Pirwerdjan, P. Becker, C. Bolm, Org. Lett. 18 (2016) 3307–3309;
(b) F.L. Hong, Z.S. Wang, D.D. Wei, et al., J. Am. Chem. Soc. 141 (2019) 16961–
16970;
(c) Y. Xu, Q. Sun, T.D. Tan, et al., Angew. Chem. Int. Ed. 58 (2019) 16252–16259;
(d) Z. Zeng, H. Jin, M. Rudolph, et al., Angew. Chem. Int. Ed. 57 (2018) 16549–
16553;
(e) Q. Zhao, D.F.L. Rayo, D. Campeau, et al., Angew. Chem. Int. Ed. 57 (2018)
13603–13607;
(f) Y. Wang, L.J. Song, X. Zhang, J. Sun, Angew. Chem. Int. Ed. 55 (2016) 9704–
9708;
(g) S.N. Karad, R.S. Liu, Angew. Chem. Int. Ed. 53 (2014) 9072–9076;
(h) C. Theunissen, B. Métayer, N. Henry, et al., J. Am. Chem. Soc. 136 (2014)
12528–12531;
Scheme 5. Proposed reaction mechanism.
(i) M. Lecomte, G. Evano, Angew. Chem. Int. Ed. 55 (2016) 4547–4551;
intramolecular competition experiment to probe the C–H func-
tionalization event. The result showed that a primary kinetic
isotope effect was not observed. This suggests that C–H function-
alization is not the rate-determining step of this oxoarylation
process.
(j) D.V. Patil, S.W. Kim, Q.H. Nguyen, et al., Angew. Chem. Int. Ed. 56 (2017)
3670–3674;
(k) P. Thilmany, G. Evano, Angew. Chem. Int. Ed. 59 (2020) 242–246;
(l) X. Zeng, J. Li, C.K. Ng, et al., Angew. Chem. Int. Ed. 57 (2018) 2924–2928.
[3] (a) D. Vasu, H.H. Hung, S. Bhunia, et al., Angew. Chem. Int. Ed. 50 (2011) 6911–
6914;
Based on these results, a plausible reaction mechanism was
proposed (Scheme 5). Initially, the ynamides was activated by Cu
(OTf)2, which could be attacked by N-aryl hydroxamic acid to
deliver intermdiate B. The following rapid [3,3] sigmatropic
rearrangement would deliver (ortho-aminoaryl) amide (3 and 4)
to constitute the oxoarylation of ynamides. Upon treatment with
K2CO3, the (ortho-aminoaryl) amide (3 or 4) would undergo a
lactamization to deliver the cyclized oxindoles 5. Therefore, the
deuterium atom of [D]-1a would be incorporated on the α-
methylene of amide, and the deuterium of [D]-2a did not show
difference with H-atom in the deprotonation of [3,3] sigmatropic
rearrangement.
(b) L. Li, B. Zhou, Y.H. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 8245–8249.
[4] (a) S. Xu, J. Liu, D. Hu, X. Bi, Green Chem. 17 (2015) 184–187;
(b) D.L. Smith, W.R.F. Goundry, H.W. Lam, Chem. Commun. 48 (2012) 1505–
1507;
(c) H. Liu, Y. Yang, J. Wu, et al., Chem. Commun. 52 (2016) 6801–6804.
[5] (a) L. Hu, S. Xu, Z. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 13135–13138;
(b) M. Yang, X. Wang, J. Zhao, ACS Catal. 10 (2020) 5230–5235.
[6] (a) B. Zhou, L. Li, X.Q. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 4015–4019;
In summary, an oxoarylation of ynamides with hydroxamic
acids has been successfully developed. Both the terminal and
internal ynamides could undergo addition/[3,3] sigmatropic
rearrangement with hydroxamic acids to constitute an oxoaryla-
tion process. This method would produce (ortho-aminoaryl)
amides and oxindoles with mild reaction condition, broad
substrate scope and high efficiency.
(b) B. Zhou, Y.Q. Zhang, K. Zhang, et al., Nat. Commun. 10 (2019) 3234–3244.
[7] B.S. Bhunia, C.J. Chang, R.S. Liu, Org. Lett. 14 (2012) 5522–5525.
[8] A. Mukherjee, R.B. Dateer, R. Chaudhuri, et al., J. Am. Chem. Soc. 133 (2011)
15372–15375.
[9] (a) M.J. Miller, Chem. Rev. 89 (1989) 1563–1579;
(b) J.B. Neilands, J. Biol. Chem. 270 (1995) 26723–26726;
(c) R.C. Hider, X. Kong, Nat. Prod. Rep. 27 (2010) 637–657.
[10] (a) E. Nuti, D. Cuffaro, E. Bernardini, et al., J. Med. Chem. 61 (2018) 4421–4435;
Declaration of competing interest
(b) C. Rouanet-Mehouas, B. Czarny, F. Beau, et al., J. Med. Chem. 60 (2017) 403–
414.
[11] (a) H.Y. Wang, L.L. Anderson, Org. Lett. 15 (2013) 3362–3365;
The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
(b) J. Wen, A. Wu, P. Chen, et al., Tetrahedron Lett. 56 (2015) 5282–5286.
[12] (a) C. Beshara, A. Hall, R. Jenkins, et al., Org. Lett. 7 (2005) 5729–5732;
(b) A. Porzelle, M. Woodrow, N. Tomkinson, Eur. J. Org. Chem. (2008) 5135–
5143;
Acknowledgments
We are grateful for the financial support by the National Natural
(c) A. Porzelle, M. Woodrow, N. Tomkinson, Org. Lett. 12 (2010) 812–815;
Science Foundation of China (Nos. 21878264, 21971222).
(d) A. Porzelle, M. Woodrow, N. Tomkinson, Org. Lett. 12 (2010) 1492–1495.
[13] S. Shaaban, V. Tona, B. Peng, N. Maulide, Angew. Chem. Int. Ed. 56 (2017)
Appendix A. Supplementary data
10938–10941.
[14] (a) B. Huang, L. Zeng, Y. Shen, S. Cui, Angew. Chem. Int. Ed. 56 (2017) 4565–
4568;
Supplementarymaterialrelatedto thisarticlecanbefound, inthe
(b) Y. Shen, B. Huang, L. Zeng, S. Cui, Org. Lett. 19 (2017) 4616–4619;
(c) R. Chen, Y. Liu, S. Cui, Chem. Commun. 54 (2018) 11753–11756;
(d) L. Zeng, H. Sajiki, S. Cui, Org. Lett. 21 (2019) 6423–6426;
References
[1] (a) C.A. Zificsak, J.A. Mulder, R.P. Hsung, C. Rameshkumar, L.L. Wei, Tetrahedron
57 (2001) 7575–7606;
(e) C. Chen, S. Cui, J. Org. Chem. 84 (2019) 12157–12164;
(b) X.N. Wang, H.S. Yeom, L.C. Fang, et al., Acc. Chem. Res. 47 (2014) 560–578;
(c) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456–9465;
(d) G. Evano, N. Blanchard, G. Compain, et al., Chem. Lett. 45 (2016) 574–585.
(f) L. Zeng, Z. Lai, C. Zhang, et al., Org. Lett. 22 (2020) 2220–2224;
(g) R. Chen, L. Zeng, B. Huang, et al., Org. Lett. 20 (2018) 3377–3380;
(h) Y. Shen, C. Wang, W. Chen, et al., Org. Chem. Front. 5 (2018) 3574–3578.
4