Journal of Biological Chemistry p. 22264 - 22275 (2010)
Update date:2022-08-11
Topics:
Dresen, Carola
Lin, Leo Y.-C.
D'Angelo, Igor
Tocheva, Elitza I.
Strynadka, Natalie
Eltis, Lindsay D.
Mycobacterium tuberculosis (Mtb) and Rhodococcus jostii RHA1 have similar cholesterol catabolic pathways. This pathway contributes to the pathogenicity of Mtb. The hsaAB cholesterol catabolic genes have been predicted to encode the oxygenase and reductase, respectively, of a flavin-dependent mono-oxygenase that hydroxylates 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) to a catechol. An hsaA deletion mutant of RHA1 did not grow on cholesterol but transformed the latter to 3-HSA and related metabolites in which each of the two keto groups was reduced: 3,9-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-17- one (3,9-DHSA) and 3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one (3,17-DHSA). Purified 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 4-hydroxylase (HsaAB) from Mtb had higher specificity for 3-HSA than for 3,17-DHSA (apparent kcat/Km = 1000 ± 100 M -1 s-1 versus 700 ± 100 M-1 s -1). However, 3,9-DHSA was a poorer substrate than 3-hydroxybiphenyl (apparent kcat/Km = 80 ± 40 M-1 s -1). In the presence of 3-HSA the Kmapp for O2 was 100 ± 10 μM. The crystal structure of HsaA to 2.5-A resolution revealed that the enzyme has the same fold, flavin-binding site, and catalytic residues as p-hydroxyphenyl acetate hydroxylase. However, HsaA has a much larger phenol-binding site, consistent with the enzyme's substrate specificity. In addition, a second crystal form of HsaA revealed that a C-terminal flap (Val367-Val394) could adopt two conformations differing by a rigid body rotation of 25° around Arg 366. This rotation appears to gate the likely flavin entrance to the active site. In docking studies with 3-HSA and flavin, the closed conformation provided a rationale for the enzyme's substrate specificity. Overall, the structural and functional data establish the physiological role of HsaAB and provide a basis to further investigate an important class of monooxygenases as well as the bacterial catabolism of steroids.
View MoreMedicalChem(Yancheng)Manuf.Co.,Ltd.
Contact:+86-515-84383366
Address:Touzeng BinHai, YanCheng City, JiangSu Province, China
Wuhan Soleado Technology Co.,Ltd.
Contact:86-2783341481 18971291927
Address:RM2405 Unit 1 Builing 1, Taiyin Tower, Changqing Road,Wuhan China
Huaihua Baohua Biotechnology Co.,Ltd
website:http://www.baochengchem.com
Contact:86-519-82698291
Address:HouYang chemical development zone,Jintan,Jiangsu,China (213200)
WUXI KINGHAN BIO-MEDICAL&CHEMICAL INC.
Contact:13861062998
Address:Room 1316,No.1619 Huishan Avenue,Wuxi,China
Contact:0086 533 2282832
Address:Zibo,Shandong
Doi:10.1039/c3ob41510d
(2013)Doi:10.1134/S1070363218090037
(2018)Doi:10.1021/jo01283a060
(1967)Doi:10.1002/chem.201806334
(2019)Doi:10.1016/S0020-1693(00)83338-1
(1988)Doi:10.1021/jo01343a057
(1966)