QSAR of TMIP Isomers
145
sity functional theory-based descriptors. Chem Res Toxicol 17: Hatch FT, Colvin ME. 1997. Quantitative structure-activity (QSAR) rela-
3
48–356.
tionships of mutagenic aromatic and heterocyclic amines. Mutat
Res 376:87–96.
Borgen E, Solyakov A, Skog K. 2001. Effects of precursor composition
and water formation of heterocyclic amines in meat model sys- Hatch FT, Knize MG, Felton JS. 1991. Quantitative structure-activity
tems. Food Chem 74:11–19.
relationships of heterocyclic amine mutagens formed during the
cooking of foods. Environ Mol Mutagen 17:4–19.
Case RAM, Hosker M-E, McDonald DB, Pearson JT. 1954. Tumors of
the urinary bladder in workmen engaged in the manufacture and Hatch FT, Knize MG, Moore DH, II, Felton JS. 1992. Quantitative cor-
use of certain dyestuff intermediates in the British chemical industry,
Parts I, II. Br J Ind Med 11:75, 213
relation of mutagenic and carcinogenic potencies for heterocyclic
amines from cooked foods and additional aromatic amines. Mutat
Res 271:269–287.
Colvin ME, Hatch FT, Felton JS. 1998. Chemical and biological factors
affecting mutagen potency. Mutat Res 400:479–492.
Hatch FT, Colvin ME, Seidl ET. 1996. Structural and quantum chemical
factors affecting mutagenic potency of aminoimidazo-azaarenes.
Environ Mol Mutagen 27:314–330.
Einisto P, Watanabe M, Ishidate M, Nohmi T. 1991. Mutagenicity of 30
chemicals in Salmonella typhimurium strains possessing different
nitroreductase or O-acetyltransferase activities. Mutat Res 259: Hatch FT, Knize MG, Colvin ME. 2001. Extended quantitative structure-
9
5–102.
activity relationships for 80 aromatic and heterocyclic amines:
structural, electronic, and hydropathic factors affecting mutagenic
potency. Environ Mol Mutagen 38:268–291.
Felton JS, Knize MG, Wood C, Wuebbles BJ, Healy SK, Stuermer DH,
Bjeldanes LF, Kimble BJ, Hatch FT. 1984. Isolation and charac-
terization of new mutagens from fried ground beef. Carcinogene-
sis 5:95–102.
Jensen F. 1999. Introduction to Computational Chemistry. New York:
Wiley. p 353.
Felton JS, Wu R, Knize MG, Thompson LH, Hatch FT. 1995. Hetero- Kim D, Guengerich FP. 2004. Selection of human cytochrome P450 1A2
cyclic amine mutagenicity/carcinogenicity: influence of repair,
metabolism, and structure. In: Adamson RH, Gustafsson J-A, Ito
mutants with enhanced activity for heterocyclic amine N-hydrox-
ylation. Biochemistry 43:981–988.
N, Nagao M, Sugimura T, Wakabayashi K, Yamazoe Y, editors. Livingstone DJ, Salt DW. 2005. Judging the significance of multiple lin-
Heterocyclic Amines in Cooked Foods: Possible Human Car- ear regression models. J Med Chem 48:661–663.
cinogens. (23rd Intl Symp Princess Takamatsu Cancer Res Maron D, Ames BN. 1983. Revised methods for the Salmonella test.
Fund) Princeton, NJ: Princeton Scientific Publishing Co. Inc. pp
0–58.
Felton JS, Knize MG, Hatch FT, Tanga MJ, Colvin ME. 1999. Heterocy-
Mutat Res 113:173–215.
5
Moore D, Felton JS. 1983. A microcomputer program for analyzing
Ames test data. Mutat Res 119:95–102.
clic amine formation and the impact of structure on their mutage- Novak M, Lin J. 1999. Correlation of azido/solvent selectivities for nitre-
nicity. Cancer Lett 143:127–134.
nium ions with ab initio hydration energies: understanding the
kinetic lability of nitrenium ions in aqueous solution. J Org Chem
64:6032–6040.
Ford GP, Herman PS. 1991. Comparison of the relative stabilities of
polycyclic aryl nitrenium ions and arylmethyl cations: ab initio
and semiempirical molecular orbital calculations. J Mol Struct Novak M, Rajagopal S. 2001. N-arylnitrenium ions. In: Tidwell TT,
THEOCHEM) 236:269–282. Richard JP, editors. Adv Phys Org Chem 36:167–253.
Ford GP, Griffin GR. 1992. Relative stabilities of nitrenium ions derived Novak M, Xu L, Wolf RA. 1998. Nitrenium ions from food-derived het-
(
from heterocyclic amine food carcinogens: relationship to muta-
genicity. Chem Biol Interact 81:19–33.
erocyclic arylamine mutagens. J Am Chem Soc 120:1643–1644.
Pais P, Salmon CP, Knize MG, Felton JS. 1999. Formation of mutagenic/
carcinogenic heterocyclic amines in dry-heated model systems,
meats, and meat drippings. J Agric Food Chem 47:1098–1108.
Pearson RG. 1963. Hard and soft acids and bases. J Am Chem Soc
85:3533–3539.
Ford GP, Herman PS. 1992. Relative stabilities of nitrenium ions derived
from polycyclic aromatic amines: relationship to mutagenicity.
Chem Biol Interact 81:1–18.
Fuscoe JC, Wu R, Shen NH, Healy SK, Felton JS. 1988. Base change anal-
ysis of Salmonella his gene revertant alleles. Mutat Res 201: Pearson RG, Songstad J. 1967. Application of the principle of hard and soft
41–251. acids and bases to organic chemistry. J Am Chem Soc 89:1827.
Ghose AK, Pritchett A, Crippen GM. 1988. Atomic physicochemical Reed AE, Weinstock RB, Weinhold F. 1985. Natural population analy-
parameters for three dimensional structure directed quantitative sis. J Chem Phys 83:735–746.
structure-activity relationships III: modeling hydrophobic interac- Rehn L. 1895. Blasengeschw u¨ lste bei fuchsinarbeitern. Arch Klin Chir
tions. J Comput Chem 9:80–90. 50:588.
Glantz SA, Slinker BK. 1990. Primer of Applied Regression and Ana- Sabbioni G, Wild D. 1992. Quantitative structure-activity relationships
2
lysis of Variance. New York: McGraw-Hill. pp 181–236, 262–
67.
of mutagenic aromatic and heteroaromatic azides and amines.
Carcinogenesis 13:709–713.
2
Guengerich FP. 1995. Human cytochrome P450 enzymes. In: Ortiz de
Montellano PR, editor. Cytochrome P450: Structure, Mechanism,
and Biochemistry. 2nd edition. New York: Plenum. pp 473–
Sasaki JC, Fellers RS, Colvin ME. 2002. Metabolic oxidation of carcino-
genic arylamines by P450 monooxygenases: theoretical support
for the one-electron transfer mechanism. Mutat Res 506:79–89.
Schut HAJ, Snyderwine EG. 1999. DNA adducts of heterocyclic amine
food mutagens: implications for mutagenesis and carcinogenesis.
Carcinogenesis 20:353–368.
535.
Guengerich FP, Humphreys WG, Yun C-H, Hammons GJ, Kadlubar FF,
Seto Y, Okazaki O, Martin MV. 1995. Mechanisms of cyto-
chrome P450 1A2-mediated formation of N-hydroxy arylamines Sugimura T. 1995. History, present and future, of heterocyclic amines,
and heterocyclic amines and their reaction with guanyl residues.
In: Adamson RH, Gustafsson J-A, Ito N, Nagao M, Sugimura T,
Wakabayashi K, Yamazoe Y, editors. Heterocyclic Amines in
Cooked Foods: Possible Human Carcinogens. (23rd Intl Symp
Princess Takamatsu Cancer Res Fund) Princeton, NJ: Princeton
Scientific Publishing Co. Inc. pp 78–84.
cooked food mutagens. In: Adamson RH, Gustafsson J-A, Ito N,
Nagao M, Sugimura T, Wakabayashi K, Yamazoe Y, editors. Het-
erocyclic Amines in Cooked Foods: Possible Human Carcinogens.
(23rd Intl Symp Princess Takamatsu Cancer Res Fund) Princeton,
NJ: Princeton Scientific Publishing Co. Inc. pp 214–231.
Tanga MJ, Bupp JE, Tochimoto TK. 1994. Syntheses of 1,5,6-trimethyl-
2-aminoimidazo[4,5-b]pyridine and 3,5,6-trimethylimidazo[4,5-b]
pyridine. J Heterocycl Chem 31:1641–1645.
Hansch C, Leo A. 1979. Substituent Constants for Correlation Analysis
in Chemistry and Biology. New York: Wiley.