Salicylaldehyde Phenylhydrazone Metal Complexes
445
moderate antibacterial and antifungal activities in this study. antibacterial activities. The results indicate that the com-
The results indicate that the complexes showed more activity plexes showed more activity than the ligand.
than the ligand. This would suggest that the chelation could
facilitate the ability of a complex to cross a cell membrane
and can be explained by Tweedy’s chelation theory.[28] Chela- References
tion considerably reduces the polarity of the metal ion mainly
1. Yildiz, M.; Kilic, Z.; Hokelek, T. J. Mol. Struct. 1998, 441, 1–10.
2. Sunatsuki, Y.; Motoda, Y.; Matsumoto, N. Coord. Chem. Rev.
2002, 226, 199–209.
whole chelate ring. Such chelation could also enhance the
3. Hecht, S. M. J. Nat. Prod. 2000, 63, 158–168.
because of partial sharing of its positive charge with the
donor groups and possible electron delocalization over the
lipophilic character of the central metal atom, which subse-
quently favors its permeation through the lipid layer of the
cell membrane.[29]
4. Arturo, S.; Giampaolo, B.; Giuseppe, R.; Maria, L. G.; Salvatore,
T. J. Inorg. Biochem. 2004, 98, 589–594.
5. Metcalfe, C.; Thomas, J. A. Chem. Soc. Rev. 2003, 32, 215–224.
6. Chatterjee, D.; Mitra, A. J. Coord. Chem. 2004, 57, 175–182.
7. Gupta, K. C.; Abdulkadir, H. K.; Chand, S. J. Mol. Catal. A 2003,
202, 253–268.
8. Dixit, P. S.; Srinivason, K. Inorg. Chem. 1988, 27, 4507–4509.
9. Salama, T. M.; Ahmed, A. H.; El-Bahy, Z. M. Microporous Meso-
porous Mater. 2006, 89, 251–259.
10. Offiong, O. E.; Martelli, S. Farmaco 1994, 49, 513–518.
11. Collee, J. G.; Duguid, J. P.; Farser, A. G.; Marmion, B. D. Eds.
Practical Medical Microbiology; Churchill Livingstone, New York,
1989.
12. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mahon, J.; Vis-
tica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J.
Nat. Cancer Ins. 1990, 82, 1107–1112.
13. Balasubramanian, K. P.; Parameswari, K.; Chinnusamy, R.; Prab-
hakaran, V.; Natarajan, K. Spectrochim. Acta Part A 2006, 65,
678–683.
14. Kumar, N. K.; Ramesh, R. Polyhedron 2005, 24, 1885–1892.
15. Salavati-Niasari, M. Microporous Mesoporous Mater. 2006, 95,
248–256.
16. Yin, H. D.; Chen, S. W. Inorg. Chim. Acta 2006, 359, 3330–3338.
17. Unver, H.; Elmali, A.; Karakasc, A.; Kara, H.; Donmez, E. J. Mol.
Struct. 2006, 800, 18–22.
18. Kannan, S.; Ramesh, R. Polyhedron 2006, 25, 3095–3103.
19. Fernandez-G, J. M.; Tepal-Sanchez, P.; Hernandez-Ortega, S. J.
Mol. Struct. 2006, 787, 1–7.
Cytotoxic Activity
The cytotoxic activities of the ligand and its complexes were
evaluated against the human breast cancer cell line (MCF-7).
All the tested compounds showed low biological activity,
except copper complexes, which showed a moderate activity
(Figures 5 and 6). Metal complexes have higher antitumor
activity than the ligand. This may be due to the lipophilic
character of the central metal atom explained by Tweedy’s
chelation.[29] The IC50 value of Cu(II) complexes was signifi-
cantly smaller than that of the all tested compounds, which
means that Cu(II) complexes are more effective than the
other complexes and their ligand.[52] The presence of oxygen
coordinating to copper may reduce its activity since it is a
hard base that increases the stability of Cu(II) rather than Cu
(I). Sulfur is a soft base that stabilizes copper in its low oxida-
tion state, hence in future work it may be used instead of oxy-
gen as a coordinating center.[53,54] It is to be noted that the
copper is a redox active metal and the copper based metallo-
complexes react with DNA, leading to the production of
reactive oxygen species (ROS).[55]
20. Majumder, A.; Rosair, G. M.; Mallick, A.; Chattopadhyay, N.;
Mitra, S. Polyhedron 2006, 25, 1753–1762.
21. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coor-
dination Compounds; Wiley Interscience, New York, 1986.
22. Ferrari, M. B.; Fara, G. G.; Lafranchi, M.; Pelizzi, C.; Tarasconi,
M. Inorg. Chem. Acta 1991, 181, 253–262.
Conclusion
23. Nakamoto, K. Infrared Spectra of Inorganic and Coordination Com-
pounds, 2nd edn.; Wiley, New York, 1970.
24. Freiria, A.; Bastida, R.; Valencia, L.; Macias, A.; Lodeiro, C.;
The ligand was synthesized to compare its spectra analysis to
that of its metal complexes for their characterization. The
ligand and some of its complexes were previously pre-
pared[56,57] using complicated methods, but in this manuscript
the synthesis proceeds in situ at room temperature, which is
more convenient for industrial manufacturing. The spectral
data and magnetic measurements of the complexes indicate
that the ligand behaved as neutral or monobasic bidentate
ligand and the geometries are either square planar or octahe-
dral. The metal in complex 3 was oxidized during complex
formation (Fe(II)! Fe(III)), which is supported by its mag-
netic moment (5.94) and its UV and IR spectrum. Only cop-
per showed moderate cytotoxic activity, while other
complexes showed low cytotoxic activity. The presence of
oxygen coordinating to copper may reduce its activity since it
is a hard base that increases the stability of Cu(II) rather than
Cu(I). Sulfur is a soft base that stabilizes copper in its low oxi-
dation state, and hence in future work it may be used instead
of oxygen as a coordinating center. All compounds under
investigation showed higher antifungal activities than
Adams, H. Inorg. Chim. Acta 2006, 359, 2383–2394.
ꢀ
ꢁ
25. Rivera, J. M.; Guzman, D.; Rodriguez, M.; Lamere, J. F.; Naka-
tani, K.; Santillan, R.; Lacroix, P. G.; Farfan, N. J. Organomet.
Chem. 2006, 691, 1722–1732.
26. Chandra, S.; Gupta, L. K. Spectrochim. Acta Part A 2005, 61,
1181–1188.
27. Kannan, S.; Ramesh, R. Polyhedron 2006, 25, 3095–3103.
28. Fahmi, N.; Gupta, I. J.; Singh, R. V. Phosphorus Sulfur Silicon
Relat. Elem. 1998, 132, 1–8.
29. Tumer, M.; Ekinci, D.; Tumer, F.; Bulut, A. Spectrochim. Acta A
2007, 67, 916–929.
30. Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R. A. Inorg. Chim.
Acta 2005, 358, 1785–1797.
31. Kumar, K. G.; John, K. S. React. Funct. Polym. 2006, 66, 1427–1433.
32. Sarkar, S.; Dey, K. Spectrochim. Acta, Part A 2005, 62, 383–393.
33. Mohamed, G. G.; Omar, M. M.; Hindy, A. M. M. Spectrochim.
Acta Part A 2005, 62, 1140–1150.
34. Abou-Melha, K. S. Spectrochim. Acta A 2008, 70, 162–170.
35. Mohameda, G. G.; El-Wahab, Z. H. A. Spectrochim. Acta, Part A
2005, 61, 1059–1068.