V. Pironti et al. / Tetrahedron 60 (2004) 8153–8160
8159
method.22 The solutions of 4 were prepared in deuterated
0.2 M sodium phosphate buffer pD 7.5 and contained
different amount of the proteins. In order to eliminate
interferences by metal impurities, a small amount of EDTA
was added to the solutions. The concentrations employed
were the following: [4]Z12.0 mM and [WT Mb]Z0–6 mM;
[4]Z14.0 mM and [T67R Mb]Z0–2 mM; [4]Z14.5 mM
and [T67K-His Mb]Z0–4 mM. The relaxation rate of the
protons of the substrate molecules interacting with the Mbs,
Fukuzumi, S.; Watanabe, Y. Biochemistry 2003, 42, 10174–
10181.
7. (a) Colonna, S.; Gaggero, N.; Manfredi, A.; Casella, L.;
Gullotti, M.; Carrea, G.; Pasta, P. Biochemistry 1990, 29,
10465–10468. (b) Colonna, S.; Gaggero, N.; Casella, L.;
Carrea, G.; Pasta, P. Tetrahedron: Asymmetry 1992, 3, 95–106.
(c) Casella, L.; Gullotti, M.; Ghezzi, R.; Poli, S.; Beringhelli,
T.; Colonna, S.; Carrea, G. Biochemistry 1992, 31, 9451–9459.
(d) van Deurzen, M. P. J.; Groen, B. W.; van Rantwijk, F.;
Sheldon, R. A. Biocatalysis 1994, 10, 247–255. (e) van
Deurzen, M. P. J.; Remkes, I. J.; van Rantwijk, F.; Sheldon,
R. A. J. Mol. Catal. A: Chem. 1997, 117, 329–337. (f)
Dembitsky, V. M. Tetrahedron 2003, 59, 4701–4720.
8. (a) Colonna, S.; Gaggero, N.; Casella, L.; Carrea, G.; Pasta, P.
Tetrahedron: Asymmetry 1993, 4, 1325–1330. (b) Dexter,
A. F.; Lakner, F. J.; Campbell, R. A.; Hager, L. P. J. Am.
Chem. Soc. 1995, 117, 6412–6413. (c) Lakner, F. J.; Hager,
L. P. J. Org. Chem. 1996, 61, 3923–3925. (d) Lakner, F. J.;
Hager, L. P. Tetrahedron: Asymmetry 1997, 8, 3547–3550.
9. (a) Shevelkova, A. N.; Ryabov, A. D. Biochem. Mol. Biol.
1996, 39, 665–670. (b) Baynton, K. J.; Bewtra, K. J.; Biswas,
N.; Taylor, K. E. Biochim. Biophys. Acta 1994, 1206, 272–
278. (c) van Rantwijk, F.; Sheldon, R. A. Trends Biotechnol.
2001, 19, 73–80.
T1b, was calculated from experimental relaxation rate, T1obs
through the equation:23
,
ꢀ
ꢁ
1
1
1
E0
1
Z
K
C
(10)
T1obs
T1b T1f KD CS0 T1f
where T1f is the T1 value for free substrate, E0 and S0 are the
initial protein and substrate concentrations, respectively,
and KD is the dissociation constant for the Mb-substrate
complex. The major contribution to the T1b value is the
paramagnetic contribution (T1M), which is correlated to the
distance (r) of the nucleus from the Fe3C center according
to the Solomon–Bloembergen equation (assuming an
electron relaxation time ts of 5!10K11 s).12,24,25 The KD
values are not known and were neglected in the present
calculations; however, the magnitude of the error associated
with this approximation is identical for all the substrate
protons. It is possible to estimate for r a maximum error of
10% assuming a dissociation constant equal to the substrate
concentration.
10. (a) Ozaki, S.; Matsui, T.; Watanabe, Y. J. Am. Chem. Soc.
1996, 118, 9784–9785. (b) Ozaki, S.; Matsui, T.; Watanabe, Y.
J. Am. Chem. Soc. 1997, 119, 6666–6667. (c) Kato, S.; Yang,
H.; Ueno, T.; Ozaki, S.; Philips, G. N.; Fukuzumi, S. M.;
Watanabe, Y. J. Am. Chem. Soc. 2002, 124, 8506–8507.
11. Hayashi, T.; Hisaeda, Y. Acc. Chem. Res. 2002, 35, 35–43.
12. Redaelli, C.; Monzani, E.; Santagostini, L.; Casella, L.;
Sanangelantoni, A. M.; Pierattelli, R.; Banci, L. ChemBio-
Chem 2002, 3, 226–233.
The paramagnetic proton NMR spectra of hh Mb were
recorded at 25 8C on solutions of the protein (w0.1 mM) in
deuterated 0.2 M sodium phosphate buffer, pD 7.5. The
interaction of hh Mb with the sulfides was studied by
recording NMR spectra of the Mb solution containing
substrate 1 (w0.5 mM) or 4 (12 mM). Spectra were
recorded acquiring 5K scans, with a 80000 Hz spectral
window, and suppressing the water signal by presaturation
for 0.3 s.
`
13. Roncone, R.; Monzani, E.; Labo, S.; Sanangelantoni, A.M.;
Casella, L. Submitted for publication.
14. Roncone, R.; Monzani, E.; Murtas, M.; Battaini, G.; Pennati,
A.; Sanangelantoni, A. M.; Zuccotti, S.; Bolognesi, M.;
Casella, L. Biochem. J. 2004, 717–724.
15. (a) Perez, U.; Dunford, H. B. Biochim. Biophys. Acta 1990,
1038, 98–104. (b) Perez, U.; Dunford, H. B. Biochemistry
1990, 29, 2757–2763. (c) Baciocchi, E.; Lanzalunga, O.;
Malandrucco, S. J. Am. Chem. Soc. 1996, 118, 8973–8974. (d)
van Rantwijk, F.; Sheldon, R. A. Curr. Opin. Biotechnol. 2000,
11, 554–564.
Acknowledgements
This work was supported by a PRIN Project of the Italian
MIUR. We thank Giuseppe Celentano for HPLC analyses.
16. (a) Fenwick, C. W.; English, A. M. J. Am. Chem. Soc. 1996,
118, 12236–12237. (b) Degray, J. A.; Gunther, M. R.;
Tschirret-Guth, R. A.; Ortiz de Montellano, P. R. J. Biol.
Chem. 1997, 272, 2359–2362. (c) Sugiyama, K.; Highet,
R. J.; Woods, A.; Cotter, R. J.; Osawa, Y. Proc. Natl. Acad.
Sci. USA 1997, 94, 796–801. (d) Gunther, M. R.; Tschirret-
Guth, R. A.; Witowska, H. E.; Fann, Y. C.; Barr, D. P.; Ortiz de
Montellano, P. R.; Mason, R. P. Biochem. J. 1998, 330, 1293–
1299. (e) Tsukuhara, K.; Kiguchi, K.; Matsui, M.; Kubota, N.;
Arakawa, R.; Sakurai, T. J. Biol. Inorg. Chem. 2000, 5, 765–
773.
References and notes
1. O’Brien, P. J.; Herschlag, D. Chem. Biol. 1999, 6, R91–0.
2. Lu, Y.; Berry, S. M.; Pfister, T. D. Chem. Rev. 2001, 101,
3047–3080.
3. Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in their
Reactions with Ligands; North-Holland: Amsterdam, 1971.
4. (a) Watanabe, Y.; Ueno, T. Bull. Chem. Soc. Jpn 2003, 76,
1309. (b) Roncone, R.; Monzani, E.; Nicolis, S.; Casella, L.
Eur. J. Inorg. Chem. 2004. 2203–2213.
17. Matsui, T.; Ozaki, S.; Watanabe, Y.; Fukuzumi, S. J. Am.
Chem. Soc. 1999, 121, 9497–9502.
18. Ozaki, S.; Matsui, T.; Roach, M. P.; Watanabe, Y. Coord.
Chem. Rev. 2000, 198, 39–59.
5. Nicolis, S.; Monzani, E.; Roncone, R.; Gianelli, L.; Casella, L.
Chem. Eur. J. 2004, 10, 2281–2290.
19. Lloyd, E.; Burk, D. L.; Ferrer, J. C.; Maurus, R.; Doran, J.;
Carey, P. R.; Brayer, G. D.; Mauk, A. G. Biochemistry 1996,
35, 11901–11912.
6. (a) Ozaki, S.; Yang, H.; Matsui, T.; Goto, Y.; Watanabe, Y.
Tetrahedron: Asymmetry 1999, 10, 183–192. (b) Yang, H.-J.;
Matsui, T.; Ozaki, S.; Kato, S.; Ueno, T.; Phillips, G. N.;
20. (a) Kelly, D. R.; Knowles, C. J.; Mahdi, J. G.; Taylor, I. N.;