Journal of Medicinal Chemistry
Article
kinase-2 protect against models of Parkinson’s disease. Nat. Med. 2010,
16, 998−1000.
cyanoquinoline LRRK2 kinase inhibitors. Bioorg. Med. Chem. Lett.
2013, 23, 1974−1977.
(32) Liu, M.; Bender, S. A.; Cuny, G. D.; Sherman, W.; Glicksman,
M.; Ray, S. S. Type II kinase inhibitors show an unexpected inhibition
mode against Parkinson’s disease-linked LRRK2 mutant G2019S.
Biochemistry 2013, 52, 1725−1736.
(33) Troxler, T.; Greenidge, P.; Zimmermann, K.; Desrayaud, S.;
Druckes, P.; Schweizer, T.; Stauffer, D.; Rovelli, G.; Shimshek, D. R.
Discovery of novel indolinone-based, potent, selective and brain
penetrant inhibitors of LRRK2. Bioorg. Med. Chem. Lett. 2013, 23,
4085−4090.
(34) Feng, Y.; Chambers, J. W.; Iqbal, S.; Koenig, M.; Park, H.;
Cherry, L.; Hernandez, P.; Figuera-Losada, M.; LoGrasso, P. V. A
small molecule bidentate-binding dual inhibitor probe of the LRRK2
and JNK kinases. ACS Chem. Biol. 2013, 8, 1747−1754.
(35) For recent reviews on LRRK2 small molecule kinase inhibitors,
(18) Lee, B. D.; Dawson, V. L.; Dawson, T. M. Leucine-rich repeat
kinase 2 (LRRK2) as a potential therapeutic target in Parkinson’s
disease. Trends Pharmacol. Sci. 2012, 33, 365−373.
(19) Lewis, P. A.; Manzoni, C. LRRK2 and human disease: A
complicated question or a question of complexes? Sci. Signal. 2012, 5,
pe2.
(20) Drolet, R. E.; Sanders, J. M.; Kern, J. T. Leucine-rich repeat
kinase 2 (LRRK2) cellular biology: A review of recent advances in
identifying physiological substrates and cellular functions. J. Neuro-
genet. 2011, 25, 140−151.
(21) Deng, X.; Dzamko, N.; Prescott, A.; Davies, P.; Liu, Q.; Yang,
Q.; Lee, J.-D.; Patricelli, M. P.; Nomanbhoy, T. K.; Alessi, D. R.; Gray,
N. S. Characterization of a selective inhibitor of the Parkinson’s disease
kinase LRRK2. Nat. Chem. Biol. 2011, 7, 203−205.
(22) Ramsden, N.; Perrin, J.; Ren, Z.; Lee, B. D.; Zinn, N.; Dawson,
V. L.; Tam, D.; Bova, M.; Lang, M.; Drewes, G.; Bantscheff, M.; Bard,
F.; Dawson, T. M.; Hopf, C. Chemoproteomics-based design of potent
LRRK2-selective lead compounds that attenuate Parkinson’s disease-
related toxicity in human neurons. ACS Chem. Biol. 2011, 6, 1021−
1028.
(23) Zhang, J.; Deng, X.; Choi, H. G.; Alessi, D. R.; Gray, N. S.
Characterization of TAE684 as a potent LRRK2 kinase inhibitor.
Bioorg. Med. Chem. Lett. 2012, 22, 1864−1869.
(24) Chen, H.; Chan, B. K.; Drummond, J.; Estrada, A. A.; Gunzner-
Toste, J.; Liu, X.; Liu, Y.; Moffat, J. G.; Shore, D.; Sweeney, Z. K.;
Tran, T.; Wang, S.; Zhao, G.; Zhu, H.; Burdick, D. J. Discovery of
selective LRRK2 inhibitors guided by computational analysis and
molecular modeling. J. Med. Chem. 2012, 55, 5536−5545.
(25) Estrada, A. A.; Liu, X.; Baker-Glenn, C.; Beresford, A.; Burdick,
D. J.; Chambers, M.; Chan, B. K.; Chen, H.; Ding, X.; DiPasquale, A.
G.; Dominguez, S. L.; Dotson, J.; Drummond, J.; Flagella, M.; Flynn,
S.; Fuji, R.; Gill, A.; Gunzner-Toste, J.; Harris, S. F.; Heffron, T. P.;
Kleinheinz, T.; Lee, D. W.; Le Pichon, C. E.; Lyssikatos, J. P.;
Medhurst, A. D.; Moffat, J. G.; Mukund, S.; Nash, K.; Scearce-Levie,
K.; Sheng, Z.; Shore, D. G.; Tran, T.; Trivedi, N.; Wang, S.; Zhang, S.;
Zhang, X.; Zhao, G.; Zhu, H.; Sweeney, Z. K. Discovery of highly
potent, selective and brain-penetrable leucine-rich repeat kinase 2
(LRRK2) small molecule inhibitors. J. Med. Chem. 2012, 55, 9416−
9433.
see: (a) Kramer, T.; Lo Monte, F.; Goring, S.; Amombo, G. M. O.;
̈
Schmidt, B. Small molecule kinase inhibitors for LRRK2 and their
application to Parkinson’s disease models. ACS Chem. Neurosci. 2012,
3, 151−160. (b) Kavanagh, M. E.; Doddareddy, M. R.; Kassiou, M.
The development of CNS-active LRRK2 inhibitors using property-
directed optimization. Bioorg. Med. Chem. Lett. 2013, 23, 3690−3696.
(c) Dzamko, N.; Halliday, G. M. Unlocking the secrets of LRRK2
function with selective kinase inhibitors. Future Neurol. 2013, 8, 347−
357.
(36) Baker-Glenn, C.; Burdick, D. J.; Chambers, M.; Chan, B. K.;
Chen, H.; Estrada, A.; Gunzner, J. L.; Shore, D.; Sweeney, Z. K.; Wang,
S.; Zhao, G. Aminopyrimidine derivatives as LRRK2 inhibitors. U.S.
Patent 8354420 B2, 2013.
(37) Hu, X.; Hu, Y.; Vogt, M.; Stumpfe, D.; Bajorath, J. MMP-Cliffs:
Systematic identification of activity cliffs on the basis of matched
molecular pairs. J. Chem. Inf. Model. 2012, 52, 1138−1145.
(38) Muller, K. The power of MMPA and a teaching lesson in
medicinal chemistry. J. Med. Chem. 2012, 55, 1815−1816.
(39) Stumpfe, D.; Bajorath, J. Exploring activity cliffs in medicinal
chemistry. J. Med. Chem. 2012, 55, 2932−2942.
(40) Griffen, E.; Leach, A. G.; Robb, G. R.; Warner, D. J. Matched
molecular pairs as a medicinal chemistry tool. J. Med. Chem. 2011, 54,
7739−7750.
(41) Hu, Y.; Bajorath, J. Chemical transformations that yield
compounds with distinct activity profiles. ACS Med. Chem. Lett.
2011, 2, 523−527.
(26) Chan, B. K.; Estrada, A. A.; Chen, H.; Atherall, J.; Baker-Glenn,
C.; Beresford, A.; Burdick, D. J.; Chambers, M.; Dominguez, S. L.;
Drummond, J.; Gill, A.; Kleinheinz, T.; Le Pichon, C. E.; Medhurst, A.
D.; Liu, X.; Moffat, J. G.; Nash, K.; Scearce-Levie, K.; Sheng, Z.; Shore,
(42) Milletti, F.; Hermann, J. C. Targeted kinase selectivity from
kinase profiling data. ACS Med. Chem. Lett. 2012, 3, 383−386.
(43) Sheng, Z.; Zhang, S.; Bustos, D.; Kleinheinz, T.; Le Pichon, C.
E.; Dominguez, S.; Solanoy, H. O.; Drummond, J.; Zhang, X.; Ding,
X.; Cai, F.; Song, Q.; Li, X.; Yue, Z.; van der Brug, M. P.; Burdick, D.
J.; Gunzner-Toste, J.; Chen, H.; Liu, X.; Estrada, A. A.; Sweeney, Z. K.;
Scearce-Levie, K.; Moffat, J. G.; Kirkpatrick, D. S.; Zhu, H. Ser1292
autophosphorylation is an indicator of LRRK2 kinase activity and
contributes to the cellular effects of PD mutations. Sci. Transl. Med.
2012, 4, 164ra161.
D. G.; Van de Poel, H.; Zhang, S.; Zhu, H.; Sweeney, Z. K. Discovery
̈
of a highly selective, brain-penetrant aminopyrazole LRRK2 inhibitor.
ACS Med. Chem. Lett. 2013, 4, 85−90.
(27) Choi, H. G.; Zhang, J.; Deng, X.; Hatcher, J. M.; Patricelli, M. P.;
Zhao, Z.; Alessi, D. R.; Gray, N. S. Brain penetrant LRRK2 inhibitor.
ACS Med. Chem. Lett. 2012, 3, 658−662.
(28) Reith, A. D.; Bamborough, P.; Jandu, K.; Andreotti, D.; Mensah,
L.; Dossang, P.; Choi, H. G.; Deng, X.; Zhang, J.; Alessi, D. R.; Gray,
N. S. GSK2578215A; A potent and highly selective 2-arylmethyloxy-5-
substituent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg. Med.
Chem. Lett. 2012, 22, 5625−5629.
(44) Keseru, G. M.; Makara, G. M. The influence of lead discovery
̈
strategies on the properties of drug candidates. Nat. Rev. Drug
Discovery 2009, 8, 203−212.
(45) For the impact of lipophilic efficiency parameters on compound
quality, see: Tarcsay, A.; Nyíri, K.; Keseru, G. M. Impact of lipophilic
̈
(29) Hermanson, S. B.; Carlson, C. B.; Riddle, S. M.; Zhao, J.; Vogel,
K. W.; Nichols, R. J.; Bi, K. Screening for novel LRRK2 inhibitors
using a high-throughput TR-FRET cellular assay for LRRK2 Ser935
phosphorylation. PLoS One 2012, 7, e43580-1−e43580-12.
(30) Franzini, M.; Ye, X. M.; Adler, M.; Aubele, D. L.; Garofalo, A.
W.; Gauby, S.; Goldbach, E.; Probst, G. D.; Quinn, K. P.; Santiago, P.;
Sham, H. L.; Tam, D.; Truong, A.; Ren, Z. Triazolopyridazine LRRK2
kinase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 1967−1973.
(31) Garofalo, A. W.; Adler, M.; Aubele, D. L.; Brigham, E. F.; Chian,
D.; Franzini, M.; Goldbach, E.; Kwong, G. T.; Motter, R.; Probst, G.
D.; Quinn, K. P.; Ruslim, L.; Sham, H. L.; Tam, D.; Tanaka, P.;
Truong, A. P.; Ye, X. M.; Ren, Z. Discovery of 4-alkylamino-7-aryl-3-
efficiency on compound quality. J. Med. Chem. 2012, 55, 1252−1260.
For the impact on CNS drugs and candidates, see: Wager, T. T.;
Chandrasekaran, R. Y.; Hou, X.; Troutman, M. D.; Verhoest, P. R.;
Villalobos, A.; Will, Y. Defining desirable central nervous system drug
space through the alignment of molecular properties, in vitro ADME,
and safety attributes. ACS Chem. Neurosci. 2010, 1, 420−434.
(46) Liu, X.; Ding, X.; Deshmukh, G.; Liederer, B. M.; Hop, C. E. C.
A. Use of cassette dosing approach to assess brain penetration in drug
discovery. Drug Metab. Dispos. 2012, 40, 963−969.
(47) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. CXIX.−The
formation and stability of spiro-compounds. Part I. Spiro-compounds
from cyclohexane. J. Chem. Soc., Trans. 1915, 107, 1080−1106.
O
dx.doi.org/10.1021/jm401654j | J. Med. Chem. XXXX, XXX, XXX−XXX