5
threaded on a rod bearing bulky substituents at its termini.
The interlocked components can undergo submolecular motions
by application of external stimuli. For example, in the case of
rotaxanes, the ring can be reversibly switched between two
different stations on the rod by application of an input such as
light, applied voltage, temperature changes, or changes in
solvent polarity. Such submolecular motions of the rings in
catenanes and rotaxanes have been explored as elegant prin-
ciples for the construction of molecular machines.
In the field of artificial photosynthesis, the use of inter-
locked structures as linkers between electron donor and
acceptor moieties has recently been explored. A number of
such systems incorporating electron donors and C60 have
8
,9
been prepared and studied by our group and others. In
9
our laboratory, we have used the Cu(I) template synthesis,
developed by Sauvage and co-workers, to assemble rotax-
10
9
Figure 1. Examples of structures studied in our previous work:
anes containing zinc(II)-porphyrins (ZnP) as stoppers and
(a) porphyrin-stoppered fullerene-rotaxanes and (b) fullerene-
stoppered porphyrin-rotaxanes.
9a
C60 on the macrocyclic ring (for an example, see Figure 1a).
The alternative configuration, in which ZnP is on the ring
and C60 acts as the stopper, has also been investigated (Figure
9
b
1
b). Upon irradiation, these ZnP-C60-based Cu(I)-rotaxanes
materials. Multiple chromatographic separations were re-
quired to afford the pure target rotaxanes, which were isolated
in low yields.
undergo a series of energy- and electron-transfer processes
that lead to a charge-separated radical pair (CSRP) state,
•
+
+
•-
ZnP -Cu -C60 , with lifetimes in the microsecond time
domain. In the case of the fullerene-stoppered porphyrin
rotaxane, Figure 1b, the CSRP lifetime in THF is 32 µs, the
longest lifetime reported to date for an interlocked D-A
system in solution at ambient temperatures.
Herein, we report an easy and expeditious one-pot
procedure to synthesize rotaxanes linked to electron donors
and C60. In recent contributions to the field of interlocked
11
molecules, we have described efficient protocols that allow
the preparation of functionalized macrocycles as well as [2]-
1
0
The preparation of these ZnP-C60 linked Cu(I)-rotaxanes
requires a long multistep synthesis. In our previous approach
to such materials, classical ester coupling was used for the
final “stoppering” reaction. As a result, the final product
was a complex mixture of interlocked and noninterlocked
and [3]catenanes based on Cu(I)-template synthesis and
1
2
“
click” chemistry. Since Cu(I) can act as both template
and catalyst, we have developed a one-pot procedure for the
final “stoppering” reactions, affording rotaxanes containing
electron donor and C60 moieties in one step with very high
yields. The preparations of ferrocene- and porphyrin-stop-
pered fullerene-rotaxanes are described here to demonstrate
the versatility of this protocol.
The building blocks and the synthetic strategy are shown
in Scheme 1 (see the Supporting Information for details).
First, C60 was attached to previously prepared phenanthroline
macrocycle 1 using the Bingel-Hirsch reaction to afford 2.
Macrocycle 2 (1 equiv) was then dissolved in 2 mL of 7:3
9
(
4) (a) Santos, J.; Grimm, B.; Illescas, B. M.; Guldi, D. M.; Martin, N.
Chem. Commum. 2008, 45, 5993. (b) Gayathri, S. S.; Wielopolski, M.; Perez,
E. M.; Fernandez, G.; Sanchez, L.; Viruela, R.; Orti, E.; Guldi, D. M.;
Martin, N. Angew. Chem.Int. Ed. 2009, 48, 815. (c) Kira, A.; Umeyama,
T.; Matano, Y.; Yoshida, K.; Isoda, S.; Park, J.; Kang, K.; Dongho, K.;
Imahori, H. J. Am. Chem. Soc. 2009, 131, 3198. (d) Sarova, G. H.;
Hartnagel, U.; Balbinot, D.; Sali, S.; Jux, N.; Hirsch, A.; Guldi, D. M
Chem.sEur. J. 2008, 14, 3137. (e) Hagemann, O.; Jørgensen, M.; Krebs,
F. C. J. Org. Chem. 2006, 71, 5546. (f) Collin, J.-P.; Harriman, A.; Heitz,
V.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1994, 116, 5679.
(
5) Sauvage, J. P.; Dietrich-Buchecker, C. O. Molecular Catenanes,
Rotaxanes and Knots; Wiley-VCH: Weinheim, Germany, 1999.
6) (a) Serrel, V.; Lee, C. F.; Kay, E. R.; Leigh, D. A. Nature 2005,
45, 523. (b) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.;
2 2 3 3 4 6
CH Cl /CH CN (v/v), to which [Cu(CH CN) ][PF ] (1 equiv)
was added as a solid. The solution was stirred for 30 min,
(
11
and previously reported phenanthroline diazide 3 was added
4
Johnston-Halperin, E.; Delonno, E.; Luo, Y.; Scheriff, B. A.; Xu, K.; Shin,
as a solid. The resulting dark brown solution was stirred for
Y. S.; Tseng, H. R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414.
3
h under an inert atmosphere with magnetic stirring to
(
7) (a) Badijic, J. D.; Credi, V.; Silvi, S.; Stoddart, J. F. Science 2004,
generate pseudo-rotaxane 4. Alkynylferrocene 5 or alkynyl-
3
03, 1845. (b) Mateo-Alonso, A.; Guldi, D. M.; Paolucci, F.; Prato, M.
Angew. Chem., Int. Ed. 2007, 46, 8120.
8) (a) Watanabe, N.; Kihara, N.; Furusho, Y.; Takata, T.; Araki, Y.;
13
2 2
zinc-porphyrin 6 (3 equiv), dissolved in 1 mL of CH Cl ,
(
was then added to the brown solution, followed by the
addition of sulfonated bathophenanthroline (SBP) (4 equiv),
CuI (2 equiv), sodium ascorbate (SA) (4 equiv), and 1,8-
Ito, O. Angew. Chem., Int. Ed. 2003, 42, 681. (b) Clifford, J. N.; Accorsi,
G.; Cardinali, F.; Nierengarten, J. F.; Armaroli, N. C. R. Chimie 2006, 9,
005. (c) Illescas, B. M; Santos, J; D ´ı az, M. C.; Mart ´ı n, N.; Atienza, C. M.;
1
Guldi, D. M. Chem.sEur. J. 2007, 30, 5027. (d) Saha, S.; Flood, A. H.;
Stoddart, J. F.; Impellizzeri, S.; Silvi, S.; Venturi, M.; Credi, A. J. Am.
Chem. Soc. 2007, 129, 12159. (f) Mateo-Alonso, A.; Ehli, C.; Rahman,
A. G. M.; Guldi, D. M.; Fioravanti, G.; Marcaccio, M.; Paolucci, F.; Prato,
M. Angew. Chem. 2007, 46, 3521. (g) Mateo-Alonso, A.; Fioravanti, G.;
Marcaccio, M.; Paolucci, F.; Rahman, A. G. M.; Ehli, C.; Marois, J. S.;
Cantin, K.; Desmarais, A.; Morin, J. F. Org. Lett. 2008, 10, 33.
(10) (a) Dietrich-Buchecker, C. O.; Sauvage, J.-P. Tetrahedron Lett.
1983, 24, 5095. (b) Dietrich-Buchecker, C. O.; Sauvage, J.-P. Chem. ReV.
1987, 87, 795. (c) Dietrich-Buchecker, C. O.; Sauvage, J.-P. Tetrahedron
1990, 46, 503.
(11) (a) Megiatto, J. D., Jr.; Schuster, D. I. J. Am. Chem. Soc. 2008,
130, 12872. (b) Megiatto, J. D, Jr.; Schuster, D. I. Chem.sEur. J. 2009,
15, 5444.
(
9) (a) Li, K.; Schuster, D. I.; Guldi, D. M.; Herranz, M. A.; Echegoyen,
L. J. Am. Chem. Soc. 2004, 126, 3388. (b) Li, K.; Bracher, P. J.; Guldi,
D. M.; Herranz, M. A.; Echegoyen, L.; Schuster, D. I. J. Am. Chem. Soc.
(12) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. 2001,
113, 2056. (b) Meldal, M.; Tornøe, C. W. Chem. ReV. 2008, 108, 2952.
(13) Lindsey, J. S.; Prathapan, S.; Johnson, T. E.; Wagner, R. W.
Tetrahedron 1994, 50, 8941.
2
004, 126, 9156. (c) Schuster, D. I.; Li, K.; Guldi, D. M.; Ramey, J. Org.
Lett. 2004, 6, 1919. (d) Schuster, D. I.; Li, K.; Guldi, D. M. C.R. Chimie.
006, 9, 892. (e) Li, K. Ph D. Dissertation, New York University, 2004.
2
Org. Lett., Vol. 11, No. 18, 2009
4153