Journal of the American Chemical Society
Page 4 of 5
6
4
7
.
(a) Kim, M.; Cohen, S. M., CrystEngComm 2012, 14, 4096ꢀ
104; (b) Fei, H.; Cohen, S. M., Chem. Commun. 2014, 50, 4810ꢀ4812.
(a) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen,
respectively; however, these catalysis results are compaꢀ
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
rable to homogeneous Pd catalysts (44~56% yield, Table
.
15c
S3).
The lower yield in these cases may be due to the
P.; Yildirim, T.; Zhou, W., J. Am. Chem. Soc. 2013, 135, 10525ꢀ10532;
b) Lau, C. H.; Babarao, R.; Hill, M. R., Chem. Commun. 2013, 49, 3634ꢀ
3636; (c) Morris, W.; Doonan, C. J.; Yaghi, O. M., Inorg. Chem. 2011, 50,
853ꢀ6855; (d) Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S.,
Langmuir 2012, 28, 15606ꢀ15613.
(a) Vermoortele, F.; Bueken, B.; Bars, G. L.; Voorde, B. V.;
(
low reactivity of the relatively electronꢀdeficient arene
substrate.
6
In conclusion, PSE is shown to be a facile and mild
functionalization approach to synthesize a sulfurꢀ
containing thiocatechol site in a robust UiOꢀ66 material.
The robust MOF allows for preparation of unprecedentꢀ
ed metalꢀmono(thiocatecholato) species with coordinaꢀ
tively unsaturated soft metal sites. Pd metalation of the
thiocatechol functionality affords an efficient and recyꢀ
clable MOF catalyst for regioselective CꢀH oxidation.
Aromatic substrates are readily oxidized with this metaꢀ
8
.
Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.;
Speybroeck, V. V.; Kirschhock, C.; De Vos, D. E., J. Am. Chem. Soc.
2013, 135, 11465ꢀ11468; (b) Fei, H.; Shin, J.; Meng, Y. S.; Adelhardt, M.;
Sutter, J.; Meyer, K.; Cohen, S. M., J. Am. Chem. Soc. 2014, 136, 4965ꢀ
4
9.
Am. Chem. Soc. 2013, 135, 16997ꢀ17003; (b) Fei, H.; Pullen, S.; Wagner,
A.; Ott, S.; Cohen, S. M., Chem. Commun. 2015, 51, 66ꢀ69; (c) Sun, D.;
Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z., Chem. Eur. J.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
973.
(a) Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S., J.
2
013, 2013 (19), 14279ꢀ14285; (d) Silva, C. G.; Luz, I.; Xamena, F. X. L.;
Corma, A.; Garcia, H., Chem. Eur. J. 2010, 16, 11133ꢀ11138.
0. Yee, K.ꢀK.; Reimer, N.; Liu, J.; Cheng, S.ꢀY.; Yiu, S.ꢀM.;
Weber, J.; Stock, N.; Xu, Z., J. Am. Chem. Soc. 2013, 135, 7795ꢀ7798.
1. (a) Ekkehardt Hahn, F.; Offermann, M.; SIsfort, C. S.; Pape,
2
lated MOF converting sp CꢀH bonds to ethers and arylꢀ
1
halides. The strong covalent metalꢀthiocatecholato bindꢀ
ing allows UiOꢀ66ꢀPdTCAT to act as a recyclable, effiꢀ
cient chelationꢀassisted catalyst.
1
T.; Frohlich, R., Angew. Chem., Int. Ed. 2008, 47, 6794ꢀ6797; (b)
Muratsugu, S.; Sodeyama, K.; Kitamura, F.; Sugimoto, M.; Tsuneyuki, S.;
Miyashita, S.; Kato, T.; Nishihara, H., J. Am. Chem. Soc. 2009, 131, 1388ꢀ
ASSOCIATED CONTENT
1
389; (c) Joshi, H. K.; Cooney, J. J. A.; Inscore, F. E.; Gruhn, N. E.;
Lichtenberger, D. L.; Enemark, J. H., Proc. Nat. Acad. Sci. USA 2001,
00, 3719ꢀ3724.
12. (a) Collins, K. D.; Glorius, F., Nat. Chem. 2013, 5, 591ꢀ601;
b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K., Angew. Chem., Int. Ed.
2012, 51, 8960ꢀ9009; (c) Lyons, T. W.; Sanford, M. S., Chem. Rev. 2010,
10, 1147ꢀ1169; (d) Ackermann, L., Chem. Rev. 2011, 111, 1315ꢀ1345.
13. (a) Enthaler, S.; Company, A., Chem. Soc. Rev. 2011, 40,
912ꢀ4924; (b) Butler, A.; Walker, J. V., Chem. Rev. 1993, 93, 1937ꢀ
1944.
4.
Hoboken, 2010.
15. (a) Dick, A. R.; Hull, K. L.; Sanford, M. S., J. Am. Chem. Soc.
004, 126, 2300ꢀ2301; (b) Desai, L. V.; Hull, K. L.; Sanford, M. S., J. Am.
Supporting Information. Experimental details, additional
characterization of MOF catalysts and catalysis reactions.
This material is available free of charge via the Internet at
http://pubs.acs.org.
1
(
1
AUTHOR INFORMATION
4
Corresponding Author
1
Li, J. J.; Johnson, D. S., Modern Drug Synthesis. Wiley:
Funding Sources
2
No competing financial interests have been declared.
Chem. Soc. 2004, 126, 9542ꢀ9543; (c) Kalyani, D.; Dick, A. R.; Anani, W.
Q.; Sanford, M. S., Tetrahedron 2006, 62, 11483ꢀ11498; (d) Zhang, S. Y.;
He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G., J. Am. Chem. Soc. 2013,
135, 2124ꢀ2127; (e) Zhang, Q.; Chen, K.; Rao, W.; Zhang, Y.; Chen, F. J.;
Shi, B. F., Angew. Chem., Int. Ed. 2013, 52, 13588ꢀ13592.
ACKNOWLEDGMENT
This work was supported by a grant from the National Sciꢀ
ence Foundation, Division of Chemistry (CHEꢀ1359906).
1
2
6.
(a) Sun, L.; Miyakai, T.; Seki, S.; Dinca, M., J. Am. Chem. Soc.
013, 135, 8185ꢀ8188; (b) Yee, K. K.; Reimer, N.; Liu, J.; Cheng, S. Y.;
Yiu, S. M.; Weber, J.; Stock, N.; Xu, Z., J. Am. Chem. Soc. 2013, 135,
7795ꢀ7798; (c) Ke, F.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.;
Xie, A. J.; Shen, Y. H.; Zhu, J. F., J. Hazardous Mater. 2011, 196, 36ꢀ43;
REFERENCES
1.
See recent MOF review issues: (a) Zhou, H.ꢀC.; Long, J. R.;
(d) Liu, T.; Che, J.ꢀX.; Hu, Y.ꢀZ.; Dong, X.ꢀW.; Liu, X.ꢀY.; Che, C.ꢀM.,
Yaghi, O. M., Chem. Rev. 2012, 112, 673ꢀ674; (b) Zhou, H.ꢀC.; Kitagawa,
S., Chem. Soc. Rev. 2014, 43, 5415ꢀ5418.
Chem. Eur. J. 2014, 20, 14090ꢀ14095.
17.
Chem. Sci. 2012, 3, 126.
1
Clark, R. A.; Underhill, A. E., Coord. Chem. Rev. 1991, 110, 115; (b) Olk,
R. M.; Olk, B.; Dietzch, W.; Kirmse, R.; Hoyer, E., Coord. Chem. Rev.
1992, 117, 99.
Kim, M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M.,
2
.
(a) Evans, J. D.; Sumby, C.; Doonan, C. J., Chem. Soc. Rev.
2
014, 43, 5933ꢀ5951; (b) Bloch, E. D.; Queen, W. L.; Krishna, R.;
8.
(a) Cassoux, P.; Valade, L.; Kobayashi, H.; Kobayashi, A.;
Zadrozny, J. M.; Brown, C. M.; Long, J. R., Science 2012, 335, 1606ꢀ
610; (c) Bloch, W. M.; Burgun, A.; Coghlan, C. J.; Lee, R.; Coote, M.
L.; Doonan, C. J.; Sumby, C. J., Nat. Chem. 2014, 6, 906ꢀ912.
(a) Tanabe, K. K.; Allen, C. A.; Cohen, S. M., Angew. Chem.,
1
3
.
1
9.
(a) Nihei, M.; Kurihara, M.; Mizutani, J.; Nishihara, H., J. Am.
Int. Ed. 2010, 49, 9730; (b) Tanabe, K. K.; Siladke, N. A.; Broderick, E.
M.; Kobayashi, T.; Goldston, J. F.; Weston, M. H.; Farha, O. K.; Hupp, J.
T.; Pruski, M.; Mader, E. A.; Johnson, M. J. A.; Nguyen, S. T., Chem. Sci.
Chem. Soc. 2003, 125, 2964ꢀ2973; (b) Makedonas, C.; Mitsopoulou, C.
A.; Lahoz, F. J.; Balana, A. I., Inorg. Chem. 2003, 42, 8853ꢀ8865; (c)
Arumugam, K.; Shaw, M. C.; Chandrasekaran, P.; Villagran, D.; Gray, T.
G.; Mague, J. T.; Donahae, J. P., Inorg. Chem. 2009, 48, 10591ꢀ10607; (d)
Cerdeira, A. C.; Afonsa, M. L.; Santos, I. C.; Pereira, L. C. J.; Coutinho, J.
T.; Rabaca, S.; Simao, D.; Henriques, R. T.; Almeida, M., Polyhedron
2
013, 4, 2483ꢀ2489; (c) Nguyen, H. G. T.; Weston, M. H.; Sarjeant, A. A.;
Gardner, D. M.; An, Z.; Carmieli, R.; Wasielewski, M. R.; Farha, O. K.;
Hupp, J. T.; Nguyen, S. T., Cryst. Growth. Des. 2013, 2013, 3528ꢀ3534;
(d) Severeyns, A.; De Vos, D. E.; Fiermans, L.; Verpoort, F.; Grobet, P. J.;
2
012, 44, 228ꢀ237.
20. Park, T.ꢀH.; Hickman, A. J.; Koh, K.; Martin, S.; WongꢀFoy,
A. G.; Sanford, M. S.; Matzger, A. J., J. Am. Chem. Soc. 2011, 133,
Jacobs, P. A., Angew. Chem., Int. Ed. 2001, 40, 586ꢀ589; (e) Shiju, R. N.;
Alberts, A. H.; Khalid, S.; Brown, D. R.; Rothenberg, G., Angew. Chem.,
Int. Ed. 2011, 123, 9789ꢀ9793.
2
2
0138ꢀ20141.
1. (a) Snieckus, V., Chem. Rev. 1990, 90, 879ꢀ933; (b) Prakash,
4.
Cohen, S. M., Chem. Rev. 2012, 112, 970ꢀ1000.
5
5
.
(a) Brozek, C. K.; Dinca, M., Chem. Soc. Rev. 2014, 43, 5456ꢀ
G. K. S.; Mathew, T.; Hoole, D.; Esteves, P. M.; Wang, Q.; Rasul, G.;
Olah, G. A., J. Am. Chem. Soc. 2004, 126, 15770ꢀ15776.
2
Chem., Int. Ed. 2009, 48, 5094ꢀ5115; (b) Yeung, C. S.; Dong, V. M.,
Chem. Rev. 2011, 111, 1215ꢀ1292.
467; (b) Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha,
O. K., Angew. Chem., Int. Ed. 2014, 53, 4530ꢀ4540; (c) Deria, P.;
Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K.,
Chem. Soc. Rev. 2014, 43, 5896ꢀ5912; (d) Han, Y.; Li, J.ꢀR.; Xie, Y.; Guo,
G., Chem. Soc. Rev. 2014, 43, 5952ꢀ5981.
2.
(a) Chen, X.; Engle, K. M.; Wang, D.ꢀH.; Yu, J.ꢀQ., Angew.
ACS Paragon Plus Environment