Organic Letters
Letter
in 94% yield without any erosion of the enantioselectivity
(Scheme 4).
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Scheme 4. Large-Scale Reductive Amination of 1g and
Facile Deprotection
Experimental materials and procedures, NMR of
products, and HPLC for racemic and chiral products
AUTHOR INFORMATION
■
Corresponding Author
ORCID
To gain insight into the reaction pathways, we conducted
isotopic-labeling experiments for the reductive amination of
ketones 1g and 1h with diphenylmethanamine using
Notes
The authors declare no competing financial interest.
1
deuterium gas (Scheme 5). From the H NMR integration,
ACKNOWLEDGMENTS
■
Scheme 5. Deuterium Incorporation Study
We thank the National Natural Science Foundation of China
(No. 21402155), Yangling Bureau of Science & Technology
(No. 2016NY-25), and Northwest A&F University
(Z109021521) for financial support. Mr. Hongli Zhang
(Northwest A&F University) is thanked for NMR analysis.
REFERENCES
■
(1) (a) Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.;
Watson, J. D. Molecular Biology of the Cell; Garland: New York, 2002.
(b) Ohkuma, T.; Noyori, R. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York,
2004; Suppl. 1. (c) Warren, S.; Wyatt, P. In Organic Synthesis: The
Disconnection Approach, 2nd ed.; Wiley: Oxford, 2008; pp 54.
(2) For reviews, see: (a) Zhu, D.; Hua, L. Biotechnol. J. 2009, 4,
1420. (b) Ward, J.; Wohlgemuth, R. Curr. Org. Chem. 2010, 14,
1914. (c) Koszelewski, D.; Tauber, K.; Faber, K.; Kroutil, W. Trends
Biotechnol. 2010, 28, 324.
(3) (a) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352,
753−819. (b) Wang, C.; Xiao, J. Top. Curr. Chem. 2013, 343, 261−
282.
(4) (a) Blaser, H.-U.; Buser, H.-P.; Jalett, H.-P.; Pugin, B.; Spindler,
F. Synlett 1999, 867−868. (b) Chi, Y.; Zhou, Y.; Zhang, X. J. Org.
́ ́
Chem. 2003, 68, 4120−4122. (c) Rubio-Perez, L.; Perez-Flores, F. J.;
for 3g, only 17% deuterium was incorporated on chiral center
C2; for 3h, deuterium on chiral center C2 was also only 8%.
We repeated the isotopic-labeling experiments using deu-
terated trifluoroacetic acid (TFA-d). Similar results were
obtained. The above results indicated these asymmetric
reductive amination reactions proceeded other than the
common inner-sphere imine intermediate reduction.14 There
was an interesting observation that protons on C1, C2, and
C3 of 3g and 3h were partially substituted by deuteriums.
The deuterium abundance on those positions increased with
elongated reaction time. We proposed that those deuteriums
underwent D/H exchange with the environmental molecular
hydrogen.15 For the roles of the additives, TFA activates the
ketone substrates and lessens the inhibitory effect of nitrogen-
containing compounds on the catalyst; MS, TFA and Ti(O-i-
Pr)4 together facilitate the formation of the imine
intermediates.
In summary, diphenylmethanamine reductively coupled
with various ketones catalyzed by the iridium−phosphor-
amidite complexes under mild conditions. As an excellent
nitrogen source, diphenylmethanamine minimizes the inhib-
itory effect on catalyst; its suitable size enables better
stereocontrol. The chiral monodentate phosphoramidite
ligands are cost-efficient, air-stable, and tunable to accom-
modate different types of substrates. By this protocol, a range
of corresponding amine products could be prepared in high
enantioselectivity. We are currently investigating the mecha-
nistic aspects of the reaction in a more thorough manner, and
the results will be reported in due course.
Sharma, P.; Velasco, L.; Cabrera, A. Org. Lett. 2009, 11, 265−268.
(d) Li, C.; Villa-Marcos, B.; Xiao, J. J. Am. Chem. Soc. 2009, 131,
6967−6969. (e) Villa-Marcos, B.; Li, C.; Mulholland, K. R.; Hogan,
P. J.; Xiao, J. Molecules 2010, 15, 2453−2472. (f) Zhou, S.; Fleischer,
S.; Jiao, H.; Junge, K.; Beller, M. Adv. Synth. Catal. 2014, 356, 3451−
3455. (g) Yang, P.; Lim, L.; Chuanprasit, P.; Hirao, H.; Zhou, J.
Angew. Chem., Int. Ed. 2016, 55, 12083−12087.
(5) (a) Kadyrov, R.; Riermeier, T. H. Angew. Chem., Int. Ed. 2003,
42, 5472−5474. (b) Tararov, V. I.; Borner, A. Synlett 2005, 203−
̈
211. (c) Steinhuebel, D.; Sun, Y.; Matsumura, K.; Sayo, N.; Saito, T.
J. Am. Chem. Soc. 2009, 131, 11316−11317. (d) Mattei, P.; Moine,
G.; Puntener, K.; Schmid, R. Org. Process Res. Dev. 2011, 15, 353−
̈
359.
(6) Kadyrov, R.; Riermeier, T. H.; Dingerdissen, U.; Tararov, V.;
Borner, A. J. Org. Chem. 2003, 68, 4067−4070.
(7) Chen, Z.-P.; Hu, S.-B.; Zhou, J.; Zhou, Y.-G. ACS Catal. 2015,
5, 6086−6089.
(8) (a) Chang, M.; Liu, S.; Zhang, X. Org. Lett. 2013, 15, 4354−
4357. (b) Chen, Z.-P.; Hu, S.-B.; Chen, M.-W.; Zhou, Y.-G. Org. Lett.
2016, 18, 2676−2679.
(9) Liu, T.-L.; Wang, C.-J.; Zhang, X. Angew. Chem., Int. Ed. 2013,
52, 8416−8419.
C
Org. Lett. XXXX, XXX, XXX−XXX