Styrene and α-Methyl Styrene of a Nickel(II) Schiff Base Complex
wards, the alkene (styrene or α-methyl styrene) (10 mmol) and TBHP
(30 mmol) were added, respectively. The mixture was heated to reflux
for 6 h. Samples were taken at periodic time intervals and analyzed by
gas chromatography. The oxidation products were identified by com-
parison with authentic samples (retention times in GC).
Acknowledgement
This work was supported by the K.N. Toosi University of Technology.
References
[1] F. Hueso-Urena, N. A. Illan-Cabeza, M. N. Moreno-Carretero,
J. M. Martinez-Martos, M. J. Ramirez-Exposito, J. Inorg. Bio-
chem. 2003, 94, 326–334.
4.5. X-ray Crystallography
The selected crystals of NiL were covered with perfluorinated oil and
mounted on the top of a glass capillary in a flow of cold gaseous
nitrogen. The orientation matrix and the unit cell dimensions were
determined from 4000 reflections [Stoe IPDS 2T graphite-monochro-
[2] F. Farzaneh, M. Majidian, M. Ghandi, J. Mol. Catal. A 1999, 148,
227–233.
[3] G. T. Musie, M. Wei, B. Subramaniam, D. H. Busch, Inorg.
Chem. 2001, 40, 3336–3441.
mated Mo-Kα radiation (λ = 71.073 pm); see also Table 3]. The intensi- [4] M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobson, Science
1997, 277, 936–938.
ties were corrected for Lorentz and polarizations effects. In addition,
absorption corrections were applied for NiL (numerical). The structure
was solved by direct methods using SIR-92 and was refined against
F2 by full-matrix least-squares using the program SHELXL-97. The
hydrogen atoms were calculated in ideal positions and were refined
[5] M. D. Angelino, P. E. Laibinis, J. Polym. Sci. A 1999, 37, 3888–
3898.
[6] C. Chapuis, D. Jacoby, Appl. Catal. A 2001, 221, 93–117.
[7] L. Liu, M. Rozenman, R. Breslow, Bioorg. Med. Chem. 2002, 10,
3973–3979.
with
a common displacement parameter. Programs used were
[8] H. Hayashi, J. Biochem. 1995, 118, 463–473.
[9] J. F. Kinneary, T. R. Wagler, C. J. Burrows, Tetrahedron Lett.
1988, 29, 877–880.
SHELXL-97,[52] SIR-92,[53] SHELXTL-Plus,[54] and PLATON.[55]
[10] H. Yoon, T. R. Wagler, K. J. O’Connor, C. J. Burrows, J. Am.
Chem. Soc. 1990, 112, 4568–4570.
Table 3. Crystal data and structure refinement for NiL.
NiL
[11] J. F. Kinneary, J. S. Albert, C. J. Burrows, J. Am. Chem. Soc.
1988, 110, 6124–6129.
Empirical formula
Formula mass
Crystal size /mm
Crystal system
Space group
a /pm
C23H28N2NiO2
423.18
[12] H. Yoon, C. J. Burrows, J. Am. Chem. Soc. 1988, 110, 4087–
4089.
0.18 × 0.12 × 0.04
orthorhombic
P212121
907.7(1)
1289.4(1)
1752.4(1)
90
[13] V. Ayala, A. Corma, M. Iglesias, J. A. Rincón, F. Sánchez, J.
Catal. 2004, 224, 170–177.
[14] M. R. Maurya, S. J. J. Titinchi, S. Chand, J. Mol. Catal. A 2003,
201, 119–130.
b/pm
[15] D. Chatterjee, S. Mukherjee, A. Mitra, J. Mol. Catal. A 2000,
154, 5–8.
c /pm
α /°
[16] R. I. Kureshy, N. H. Khan, S. H. R. Abdi, S. T. Patel, P. Iyer, E.
Suresh, P. Dastidar, J. Mol. Catal. A 2000, 160, 217–227.
[17] D. Chatterjee, A. Mitra, J. Mol. Catal. A 1999, 144, 363–367.
[18] R. Ferreira, H. García, B. D. Castro, C. Freire, Eur. J. Inorg.
Chem. 2005, 4272–4279.
β /°
90
90
γ /°
Volume /pm3 × 106
Z
2051.0(3)
4
D
calcd. /g· cm–3
1.37
[19] K. C. Gupta, A. K. Sutar, Coord. Chem. Rev. 2008, 252, 1420–
1450.
Absorp. correction
μ /cm–1 (Mo-Kα)
T /K
numerical
9.67
[20] X. G. Zhou, J. S. Huang, X. Q. Yu, Z. Y. Zhou, C. M. Che, J.
Chem. Soc. Dalton Trans. 2000, 1075–1080.
[21] A. Zsigmond, A. Horvath, F. Notheisz, J. Mol. Catal. A 2001,
171, 95–102.
100
56.74
2θmax /°
Index range
–12 ≤ h ≤ 10
–14 ≤ k ≤ 17
–23 ≤ l ≤ 19
8564
[22] D. E. D. Vos, P. P. Knops-Gerrits, D. L. Vanoppen, P. A. Jacobs,
Supramol. Chem. 1995, 6, 49–57.
Reflections collected
[23] S. Rayati, M. Koliaei, F. Ashouri, S. Mohebbi, A. Wojtczak, A.
Kozakiewicz, Appl. Catal. A 2008, 346, 65–71.
[24] S. Rayati, A. Wojtczak, A. Kozakiewicz, Inorg. Chim. Acta 2008,
361, 1530–1533.
Uniq. reflect.
4931
Rint
0.0669
Reflect. with Fo > 4σ(Fo)
4088
Parameters
258
[25] D. Hu, Y. Wi, X. Dang, Y. Fang, React. Funct. Polym. 2000, 48,
1–3.
Flack parameter
–0.02(2)
0.0454
R1
[26] A. Zsigmond, F. Notheisz, Z. Frater, J. E. Backvall, Stud. Surf.
Sci. Catal. 1997, 108, 453–459.
wR2 (all data)
0.1049a)
0.385
Max. residual electron density /
[27] R. I. Kureshy, N. H. Khan, S. H. R. Abdi, S. T. Patel, P. K. Iyer,
R. V. Jasra, J. Catal. 2002, 209, 99–104.
e·pm–3 × 10–6
a) w = 1/[σ2(Fo )+(0.0575P)2]; P = [max (Fo , 0)+2Fc ]/2.
2
2
2
[28] S. Rayati, S. Zakavi, M. Koliaei, A. Wojtczak, A. Kozakiewicz,
Inorg. Chem. Commun. 2010, 13, 203–207.
[29] P. A. Karplus, M. A. Pearson, R. P. Hausinger, Acc. Chem. Res.
1997, 30, 330–337.
The crystallographic data (excluding structure factors) for the structure
in this paper have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication number CCDC-806604
(NiL). Copies of the data can be obtained, free of charge, by applica-
tion to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-
1223-336033; E-Mail: data_request@ccdc.cam.ac.uk or via the inter-
net: http://www.ccdc.cam.ac.uk/products/csd/request.)
[30] H. L. Zhu, L. M. Zheng, J. Zhao, W. M. Bu, W. X. Tang, Transi-
tion Met. Chem. 1999, 24, 131–134.
[31] H. L. Zhu, Y. X. Tong, X. M. Chen, C. X. Ren, Transition Met.
Chem. 2001, 26, 528–531.
[32] J. E. Kovacic, Spectrochim. Acta 1987, 23, 183–186.
[33] R. Atkins, G. Brewer, E. Kokot, G. M. Mockler, E. Sinn, Inorg.
Chem. 1985, 24, 127–134.
Z. Anorg. Allg. Chem. 2011, 1224–1228
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1227