Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
biological environment that can avoid interference from
albumin. For our fluorescence detection method, excess probe
10 (4 µM) was incubated with 18-fold diluted human plasma
sample in buffer medium (25 mM Tris, 192 mM Glycine, 0.1%
SDS, 1 mM DTT, pH 8.6). We monitored the changes in emission
intensity and the normalized fluorescence intensity was
obtained by subtracting the fluorescence intensity resulted
from 0.63 mM of human serum albumin. Then, the TTR
concentration in this sample was estimated by using a standard
calibration plot (Fig. 2b and Fig. S6, see ESI). As shown in Figure
DOI: 10.1039/C9CC04172A
afous, M. Eisenberg, A. M. Saunders, A. D. Roses and D. Goldgab
er, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 8368.
6. M. Alemi, C. Gaiteiro, C. A. Ribeiro, L. M. Santos, J. R. Gomes, S.
M. Oliveira, P. O. Couraud, B. Weksler, I. Romero, M. J. Saraiva a
nd I. Cardoso, Sci. Rep., 2016, 6, 20164.
7. (a) C. S. Silva, J. Eira, C. A. Ribeiro, A. Oliveira, M. M. Sousa, I. Car
doso and M. A. Liz, Neurobiol. Aging, 2017, 59, 10; (b) R. Costa, F
. Ferreira-da-Silva, M. J. Saraiva and I. Cardoso, Plos One, 2008, 3
, 2899.
4, the TTR level (4.08
close to the results (3.96
µM) determined by probe 10 was much 8. J. N. Buxbaum, Z. Ye, N. Reixach, L. Friske, C. Levy, P. Das, T. Gold
e, E. Masliah, A. R. Roberts and T. Bartfai, Proc. Natl. Acad. Sci. U
. S. A., 2008, 105, 2681.
µ
M) obtained using SDS-PAGE/
western blot technique. To further show the reliability of the
fluorescence detection method, the fluorescence change
induced by probe 10 was also monitored with albumin-deprived
human plasma using a commercially available albumin-
depletion kit. As expected, the obtained result for TTR level
9. (a) I. Zerr and S. F. Gloeckner, European Neurological Review, 20
09, 4, 17; (b) M. A. Bradley-Whitman, E. Abner, B. C. Lynn and M
. A. Lovell, J. Alzheimers Dis., 2015, 47, 761; (c) S. H. Han, E. S. Ju
ng, J. H. Sohn, H. J. Hong, H. S. Hong, J. W. Kim, D. L. Na, M. Kim,
H. Kim, H. J. Ha, Y. H. Kim, N. Huh, M. W. Jung and I. Mook-Jung
, J. Alzheimers Dis., 2011, 25, 77; (d)H. Riisoen, Acta. Neurol. Sca
nd., 1988, 78, 455.
10. (a) E. M. Castano, A. E. Roher, C. L. Esh, T. A. Kokjohn and T. Bea
ch, Neurol. Res., 2006, 28, 155; (b) A. Biroccio, P. del Boccio, M.
Panella, S. Bernardini, C. Di Ilio, D. Gambi, P. Stanzione, P. Sacch
etta, G. Bernardi, A. Martorana, G. Federici, A. Stefani and A. Ur
bani, Proteomics, 2006, 6, 2305.
(4.19
µM) is in very good agreement to the range of that
determined through the aforementioned methods. The newly
developed fluorescence method in this study was further
validated by measuring the exact concentration of TTR in
human clotted serum, which suggested that different sample
preparation methods do not interfere with the sensing ability of
probe 10
In conclusion, we have designed, synthesized, and
characterized a series of compounds 10 based on an indole
.
11. (a) S. Choi, D. S. T. Ong and J. W. Kelly, J. Am. Chem. Soc., 2010,
132, 16043; (b) S. Choi and J. W. Kelly, Bioorg. Med. Chem., 2011
, 19, 1505; (c) N. Myung, S. Connelly, B. Kim, S. J. Park, I. A. Wilso
n, J. W. Kelly and S. Choi, Chem. Commun., 2013, 49, 9188; (d) A.
Baranczak, S. Connelly, Y. Liu, S. Choi, N. P. Grimster, E. T. Powe
rs, I. A. Wilson and J. W. Kelly, Biopolymers, 2014, 101, 484; (e) A
. Baranczak, Y. Liu, S. Connelly, W. G. Du, E. R. Greiner, J. C. Gene
reux, R. L. Wiseman, Y. S. Eisele, N. C. Bradbury, J. Dong, L. Nood
leman, K. B. Sharpless, I. A. Wilson, S. E. Encalada and J. W. Kelly
, J. Am. Chem. Soc., 2015, 137, 7404; (f) N. P. Grimster, S. Connel
ly, A. Baranczak, J. Dong, L. B. Krasnova, K. B. Sharpless, E. T. Po
wers, I. A. Wilson and J. W. Kelly, J. Am. Chem. Soc., 2013, 135, 5
656; (g) Y. Cen, Y. M. Wu, X. J. Kong, S. Wu, R. Q. Yu and X. Chu,
Anal. Chem., 2014, 86, 7119; (h) Z. Chen, C. Wu, Z. F. Zhang, W.
P. Wu, X. F. Wang and Z. Q. Yu, Chin. Chem. Lett., 2018, 29, 1601
; (i) S. J. Sun, Q. W. Guan, Y. Liu, B. Wei, Y. Y. Yang and Z. Q. Yu, C
hin. Chem. Lett., 2019, 30, 1051.
1
-
moiety for detection of TTR, which serves as a potential
biomarker for early diagnosis of AD. Spectroscopic and stability
studies demonstrated that probe 10 exhibited the desired
photo-physical properties (large stokes shifts, high quantum
yield, and low limit of detection) and high plasma stability,
which are beneficial for its biological application. The simple
and sensitive fluorescence method developed according to the
TTR level of human plasma and serum is highly sensitive and
reliable, and can further enhance AD's diagnostic ability through
composite analysis of different biomolecules (A
neuroimaging studies.
We are grateful for the support of the National Research
Foundation of Korea, funded by the Ministry of Education,
Science and Technology (NRF-2018R1D1A3B07046990) and the
Ministry of Science and ICT (NRF-2015M3A9B5053643).
β and tau) and
12. C. A. Royer, Chem Rev, 2006, 106, 1769.
13. Z. Gao, Y. Hao, M. Zheng and Y. Chen, RSC Adv., 2017, 7, 7604.
14. (a) Y. Hayashi, N. Obata, M. Tamaru, S. Yamaguchi, Y. Matsuo, A.
Saeki, S. Seki, Y. Kureishi, S. Saito, S. Yamaguchi and H. Shinokub
o, Org. Lett., 2012, 14, 866; (b) B. K. Nunnally, H. He, L. C. Li, S. A
. Tucker and L. B. McGown, Anal. Chem., 1997, 69, 2392; (c) K. Ji
a, Y. Wan, A. D. Xia, S. Y. Li, F. B. Gong and G. Q. Yang, J. Phys. Ch
em. A, 2007, 111, 1593.
15. (a) A. R. Hurshman, J. T. White, E. T. Powers and J. W. Kelly, Bioc
hemistry, 2004, 43, 7365; (b) X. Jiang, C. S. Smith, H. M. Petrassi,
P. Hammarstrom, J. T. White, J. C. Sacchettini and J. W. Kelly, Bi
ochemistry, 2001, 40, 11442.
Notes and references
1. (a) J. A. Hardy and G. A. Higgins, Science, 1992, 256, 184; (b)K. S.
Kosik, C. L. Joachim and D. J. Selkoe, Proc. Natl. Acad. Sci. U. S. A
., 1986, 83, 4044.
2. B. De Strooper, R. Vassar and T. Golde, Nat. Rev. Neurol., 2010,
6, 99.
3. J. M. Tarasoff-Conway, R. O. Carare, R. S. Osorio, L. Glodzik, T. B
utler, E. Fieremans, L. Axel, H. Rusinek, C. Nicholson, B. V. Zlokov
ic, B. Frangione, K. Blennow, J. Menard, H. Zetterberg, T. Wisnie
wski and M. J. de Leon, Nat. Rev. Neurol., 2015, 11, 457.
4. (a) S. M. Johnson, R. L. Wiseman, Y. Sekijima, N. S. Green, S. L. A
damski-Werner and J. W. Kelly, Acc. Chem. Res., 2005, 38, 911; (
b) H. L. Monaco, M. Rizzi and A. Coda, Science, 1995, 268, 1039.
5. (a) D. T. Yang, G. Joshi, P. Y. Cho, J. A. Johnson and R. M. Murphy
, Biochemistry, 2013, 52, 2849; (b) A. L. Schwarzman, L. Gregori,
16. P. Borowicz, J. Herbich, A. Kapturkiewicz and J. Nowacki, Chem.
Phys., 1999, 244, 251.
17. F. M. Williams, Pharmacol. Therapeut., 1987, 34, 99.
18. X. M. He and D. C. Carter, Nature, 1992, 358, 209.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins